
1 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

[MS - OFFCRYPTO]:

Office Document Cryptography Structure

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation for protocols,
file formats, languages, standards as well as overviews of the interaction among each of these
technologies.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the

technologies described in the Open Specifications and may distribute po rtions of it in your
implementations using these technologies or your documentation as necessary to properly

document the implementation. You may also distribute in your implementation, with or without
modification, any schema, IDL's, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.

Á Patents . Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise . If you would prefer a written license, or if the te chnologies described in the Open
Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com .

Á Trademarks . T he names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, e -mail
addresses, logos, people, places, and events depicted in this documentation are fictitious. No
associat ion with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than specif ically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications do not require the use of Microsoft programming tools or programming
environments in order for you to develop an implementation. If you have access to M icrosoft
programming tools and environments you are free to take advantage of them. Certain Open
Specifications are intended for use in conjunction with publicly available standard specifications and
network programming art, and assumes that the reader eit her is familiar with the aforementioned

material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks

2 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Revision Summary

Date
Revision
History

Revision
Class Comments

4/4/2008 0.1 Initial Availability

6/27/2008 1.0 Major Revised and edited the technical content

10/6/2008 1.01 Editorial Revised and edited the technical content

12/12/2008 1.02 Editorial Revised and edited the technical content

3/18/2009 1.03 Editorial Revised and edited the technical content

7/13/2009 1.04 Major Revised and edited the technical content

8/28/2009 1.05 Major Updated and revised the technical content

11/6/2009 1.06 Editorial Revised and edited the technical content

2/19/2010 2.0 Editorial Revised and edited the technical content

3/31/2010 2.01 Editorial Revised and edited the technical content

4/30/2010 2.02 Editorial Revised and edited the technical content

6/7/2010 2.03 Editorial Revised and edited the technical content

6/29/2010 2.04 Editorial Changed language and formatting in the technical content.

7/23/2010 2.05 Minor Clarified the meaning of the technical content.

9/27/2010 2.05 No Change No changes to the meaning, language, or formatting of the
technical content.

11/15/2010 2.05 No Change No changes to the meaning, language, or formatting of the
technical content.

12/17/2010 2.05 No Change No changes to the meaning, language, or formatting of the
technical content.

3/18/2011 2.05 No Change No changes to the meaning, language, or formatting of the
technical content.

6/10/2011 2.05 No Change No changes to the meaning, language, or formatting of the
technical content.

1/20/2012 2.6 Minor Clarified the meaning of the technical content.

4/11/2 012 2.6 No Change No changes to the meaning, language, or formatting of the
technical content.

7/16/2012 2.7 Minor Clarified the meaning of the technical content.

10/8/2012 2.8 Minor Clarified the meaning of the technical content.

2/11/2013 2.8 No Change No changes to the meaning, language, or formatting of the
technical content.

7/30/2013 2.8 No Change No changes to the meaning, language, or formatting of the
technical content.

11/18/2013 2.8 No Change No changes to the meaning, language, or f ormatting of the
technical content.

3 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Date
Revision
History

Revision
Class Comments

2/10/2014 2.8 No Change No changes to the meaning, language, or formatting of the
technical content.

4/30/2014 3.0 Major Significantly changed the technical content.

7/31/2014 3.0 No Change No changes to the meaning, language, or formatting of the
technical content.

10/30/2014 3.0 No Change No changes to the meaning, language, or formatting of the
technical content.

9/4/2015 3.0 No Change No changes to the meaning, language, or formatting o f the
technical content.

4 / 10 7

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Table of Contents

1 Introduction 7
1.1 Glossary 7
1.2 References 10

1.2.1 Normative References 10
1.2.2 Informative References 12

1.3 Overview 12
1.3.1 Data Spaces 12
1.3.2 Information Rights Management Data Space 13
1.3.3 Encryption 15

1.3.3.1 XOR Obfuscation 15
1.3.3.2 40 -bit RC4 Encryption 15
1.3.3.3 CryptoAPI RC4 Encryption 15
1.3.3.4 ECMA-376 Document Encryption 15

1.3.4 Write Protection 16
1. 3.5 Digital Signatures 16
1.3.6 Byte Ordering 16
1.3.7 String Encoding 16
1.3.8 OLE Compound File Path Encoding 16
1.3.9 Pseudocod e Standard Objects 16

1.3.9.1 Array 17
1.3.9.2 String 17
1.3.9.3 Storage 17
1.3.9.4 Stream 17

1.4 Relationship to Protocols and Other Structures 17
1.5 Applicability Statement 17

1.5.1 Data Spaces 17
1.5.2 Information Rights Management Data Space 18
1.5.3 Encryption 18

1.6 Versioning and Localization 18
1.7 Vendor -Extensible Fields 18

2 Structures 19
2.1 Data Spaces 19

2.1.1 File 19
2.1.2 Length -Prefixed Padded Unicode String (UNICODE -LP-P4) 20
2.1.3 Length -Prefixed UTF -8 String (UTF -8-LP-P4) 21
2.1.4 Version 21
2.1.5 DataSpaceVersionInfo 21
2.1.6 DataSpaceMap 22

2.1.6.1 DataSpaceMapEntry Structure 23
2.1.6.2 DataSpaceReferenceComponent Structure 23

2.1.7 DataSpaceDefinition 24
2.1.8 TransformInfoHeader 25
2.1.9 EncryptionTransformInfo 25

2.2 Information Rights Management Data Space 26
2.2.1 \ 0x06DataSpaces \ DataSpaceMap Stream 26
2.2.2 \ 0x06DataSpaces \ DataSpaceInfo Storage 27
2.2.3 \ 0x06DataSpaces \ TransformInfo S torage for Office Binary Documents 27
2.2.4 \ 0x06DataSpaces \ TransformInfo Storage for ECMA -376 Documents 28
2.2.5 ExtensibilityHeader 29
2.2.6 IRMDSTransformInfo 29
2.2.7 End-User License Stream 29
2.2.8 LicenseID 30
2.2.9 EndUserLicenseHeader 30
2.2.10 Protected Content Stream 30

5 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2.2.11 Viewer Content Stream 31
2.3 Encryption 31

2.3.1 EncryptionHeaderFlags 32
2.3.2 EncryptionHeader 32
2.3.3 EncryptionVerifier 34
2.3.4 ECMA-376 Document Encry ption 36

2.3.4.1 \ 0x06DataSpaces \ DataSpaceMap Stream 36
2.3.4.2 \ 0x06DataSpaces \ DataSpaceInfo Storage 36
2.3.4.3 \ 0x06DataSpaces \ TransformInfo Storage 36
2.3.4. 4 \ EncryptedPackage Stream 37
2.3.4.5 \ EncryptionInfo Stream (Standard Encryption) 37
2.3.4.6 \ EncryptionInfo Stream (Extensible Encryption) 38
2.3.4.7 ECMA-376 Document Encryption Key Generation (Standard Encryption) 40
2.3.4.8 Password Verifier Generation (Standard Encryption) 41
2.3.4.9 Password Verification (Standard Encrypt ion) 41
2.3.4.10 \ EncryptionInfo Stream (Agile Encryption) 42
2.3.4.11 Encryption Key Generation (Agile Encryption) 47
2.3.4.12 Initialization Vector Generation (Agile Encryption) 48
2.3.4.13 PasswordKeyEncryptor Generation (Agile Encryption) 48
2.3.4.14 DataIntegrity Generation (Agile Encryption) 50
2.3.4.15 Data Encryption (Agile Encryption) 50

2.3.5 Office Binary Document RC4 CryptoAPI Encryption 51
2.3.5.1 RC4 CryptoAPI Encryption Header 51
2.3.5.2 RC4 CryptoAPI Encryption Key Generation 52
2.3.5.3 RC4 CryptoAPI EncryptedStreamDescriptor Structure 53
2.3.5.4 RC4 CryptoAPI Encrypted Summary Stream 53
2.3.5.5 Password Verifier Generation 55
2.3.5.6 Password Verification 55

2.3.6 Office Binary Document RC4 Encryption 56
2.3.6.1 RC4 Encryption Header 56
2.3.6.2 Encryption Key Derivation 57
2.3.6.3 Password Ve rifier Generation 57
2.3.6.4 Password Verification 57

2.3.7 XOR Obfuscation 58
2.3.7.1 Binary Document Password Verifier Derivation Method 1 58
2.3.7.2 Binary Document XOR Array Initialization Method 1 58
2.3.7.3 Binary Document XOR Data Transformation Method 1 60
2.3.7.4 Binary Document Password Verifier Derivation Method 2 61
2.3.7.5 Binary Document XOR Array Initialization Method 2 62
2.3.7.6 Binary Document XOR Data Transformation Method 2 63
2.3.7.7 Password Verification 63

2.4 Document Write Protection 63
2.4.1 ECMA-376 Document Write Protection 63
2.4.2 Binary Document Write Protection 63

2.4.2.1 Binary Document Write Protection Method 1 63
2. 4.2.2 Binary Document Write Protection Method 2 63
2.4.2.3 Binary Document Write Protection Method 3 64
2.4.2.4 ISO Write Protection Method 64

2.5 Binary Document Digital Signatures 65
2.5.1 CryptoAPI Digital Signature Structures and Streams 65

2.5.1.1 TimeEncoding Structure 65
2.5.1.2 CryptoAPI Digital Signature CertificateInfo Structure 66
2.5.1.3 CryptoAPI Digital Signature Structure 68
2.5.1.4 \ _signatures Stream 68
2.5.1.5 CryptoAPI Digital Signature Generation 68

2.5.2 Xmldsig Digital Signature Elements 70
2.5.2.1 SignedInfo Element 70
2.5.2.2 SignatureValue Element 70

6 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2.5.2.3 KeyInfo Element 71
2.5.2.4 idPackageObject Object Element 71
2.5.2.5 idOfficeObject Object Element 71
2.5.2.6 XAdES Elements 74

2.5.3 _xmlsignatures Storage 75

3 Structure Examples 76
3.1 Version Stream 76
3.2 DataSpaceMap Stream 77

3.2.1 DataSpaceMapEntry Structure 78
3.3 DRMEncryptedDat aSpace Stream 79
3.4 0x06Primary Stream 79
3.5 EUL-ETRHA1143ZLUDD412YTI3M5CTZ Stream 81

3.5.1 EndUserLicenseHeader Structure 82
3.5.2 Certificate Chain 82

3.6 EncryptionHeader Structure 83
3.7 EncryptionVerifier Structure 84
3.8 \ EncryptionInfo Stream 85
3.9 \ EncryptionInfo Stream (Third -Party Extensible Encryption) 87
3.10 Office Binary Document RC4 Encryption 88

3.10.1 Encryption Header 88
3.11 PasswordKeyEncryptor (Agile Encryption) 89

4 Security 93
4.1 Security Considerations for Implementer s 93

4.1.1 Data Spaces 93
4.1.2 Information Rights Management 93
4.1.3 Encryption 93

4.1.3.1 ECMA-376 Document Encryption 93
4.1.3.2 Office Binary Document RC4 CryptoAPI Encryption 93
4.1.3.3 Office Binary Document RC4 Encryption 94
4.1.3.4 XOR Obfuscation 94

4.1.4 Document Write Protection 94
4.1.5 Binary Document Digital Signatures 95

4.2 Index of Security Fields 95

5 Appendix A: Product Behavior 96

6 Change Tracking 102

7 Index 103

7 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

1 Introduction

The Office Document Cryptography Structure is relevant to documents that have Information Rights
Management (IRM) policies, document encryption, or signing and write protection applied. More
specifically, this file format describes the following:

Á A structure that acts as a generic mechanism for storing data that has been transformed along
with information about that data.

Á A structure fo r storing rights management policies that have been applied to a particular
document.

Á Encryption, signing, and write protection structures.

Sections 1.7 and 2 of this specification are normative and can contain the terms MAY, SHOULD, MUST,
MUST NOT, and SH OULD NOT as defined in [RFC2119] . All other sections and examples in this
specification are informative.

1.1 Glossary

The following terms are specific to this document:

Advanced E ncryption Standard (AES) : A block cipher that supersedes the Data Encryption
Standard (DES) . AES can be used to protect electronic data. The AES algorithm can be used to

encrypt (encipher) and d ecrypt (decipher) information. Encryption converts data to an
unintelligible form called ciphertext; decrypting the ciphertext converts the data back into its
original form, called plaintext. AES is used in symmetric -key cryptography, meaning that the
same key is used for the encryption and decryption operations. It is also a block cipher,
meaning that it operates on fixed -size blocks of plaintext and ciphertext, and requires the size of
the plaintext as well as the ciphertext to be an exact multiple of thi s block size. AES is also
known as the Rijndael symmetric encryption algorithm [FIPS197] .

ASCII : The American Standard Code for Information Interchange (ASCII) is an 8 -bit character -

encoding s cheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8 -bit
ASCII character or an array of 8 -bit ASCII characters with the high bit of each ch aracter set to
zero.

base64 encoding : A binary - to - text encoding scheme whereby an arbitrary sequence of bytes is

converted to a sequence of printable ASCII characters, as described in [RFC4648] .

block cipher : A cryptographic algorithm that transforms a group of plaintext bits, referred to as a
block, into a fixed -size block of cipher text. When the process is reversed, a fixed -size block of
cipher text is transformed into a block of plaintext bits. See also str eam cipher.

certificate : A certificate is a collection of attributes (1) and extensions that can be stored
persistently. The set of attributes in a certificate can vary depending on the intended usage of
the certificate. A certificate securely binds a publ ic key to the entity that holds the corresponding

private key. A certificate is commonly used for authentication (2) and secure exchange of

information on open networks, such as the Internet, extranets, and intranets. Certificates are
digitally signed by t he issuing certification authority (CA) and can be issued for a user, a
computer, or a service. The most widely accepted format for certificates is defined by the ITU -T
X.509 version 3 international standards. For more information about attributes and exte nsions,
see [RFC3280] and [X509] sections 7 and 8.

certificate chain : A sequence of certificates , where each certificate in the sequence is signed by

the subsequent certificate. The last certificate in the chain is normally a self -signed certificate.

http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=89870
http://go.microsoft.com/fwlink/?LinkId=90487
http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90590

8 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

cipher block chaining (CBC) : A method of encrypting multiple blocks of plaintext with a block
cipher such that each ciphertext block is dependent on all previously processed plaintext blocks.

In the CBC mode of operation, the first block of plaintext is XOR'd with an Initialization Vector
(IV). Each subsequent block of plaintext is XOR'd with the previously generated ciphertext block

before encryption with the underlying block cipher. To prevent certain attacks, the IV must be
unpredictable, and no IV should be used more than once with the same key. CBC is specified in
[SP800 -38A] section 6.2.

Component Object Model (COM) : An object -oriented programming model that defines how
objects interact within a single process or between processes. In COM , clients have access to an
object through interfaces implemented on the object. For more information, see [MS -DCOM] .

Coordinated Universal Time (UTC) : A high -precision atomic time standard that approximately

tracks Universal Time (UT). It is the basis for legal, civil time all over the Earth. Time zones
around the world are expressed as positive and negative offsets from UTC. In this role, it is also
referred to as Zulu time (Z) and Greenwich Mean Time (GMT). In these specifications, all
references to UTC refer to the time at UTC -0 (or GMT).

Cryptographic Applic ation Programming Interface (CAPI) or CryptoAPI : The Microsoft
cryptographic application programming interface (API). An API that enables application

developers to add authentication (2), encoding, and encryption to Windows -based applications.

cryptographi c service provider (CSP) : A software module that implements cryptographic
functions for calling applications that generates digital signatures. Multiple CSPs may be
installed. A CSP is identified by a name represented by a NULL - terminated Unicode string.

Data Encryption Standard (DES) : A specification for encryption of computer data that uses a
56 -bit key developed by IBM and adopted b y the U.S. government as a standard in 1976. For
more information see [FIPS46 -3] .

data space : A series of transforms that operate on original document content in a specific order.
The first tr ansform in a data space takes untransformed data as input and passes the
transformed output to the next transform. The last transform in the data space produces data
that is stored in the compound file. When the process is reversed, each transform in the d ata

space is applied in reverse order to return the data to its original state.

data space reader : A software component that extracts protected content to perform an
operation on the content or to display the content to users. A data space reader does not modify

or create data spaces.

data space updater : A software component that can read and update protected content . A data
space updater cannot change data space definitions.

data space writer : A software component that can read, update, or create a data space definition
or protected content .

Distinguished Encoding Rules (DER) : A method for encoding a data object based on Basic

Encoding Rules (BER) encoding but with additional constraints. DER is used to encode X.509
certificates that need to be d igitally signed or to have their signatures verified.

electronic codebook (ECB) : A block cipher mode that does not use feedback and encrypts each
block individually. Blocks of identical plaintex t, either in the same message or in a different
message that is encrypted with the same key, are transformed into identical ciphertext blocks.
Initialization vectors cannot be used.

encryption key : One of the input parameters to an encryption algorithm. Ge nerally speaking, an

encryption algorithm takes as input a clear - text message and a key, and results in a cipher - text
message. The corresponding decryption algorithm takes a cipher - text message, and the key,
and results in the original clear - text message.

http://go.microsoft.com/fwlink/?LinkId=128809
%5bMS-DCOM%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89872

9 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

globally unique identifier (GUID) : A term used interchangeably with universally unique
identifier (UUID) in Microsoft protocol technical documents (TDs). Interchanging the usage of

these terms does not imply or require a specific algorithm or mechanism to generate the value.
Specifically, the use of this term does not imply or require that the algorithms described in

[RFC4122] or [C706] must be used for generating the GUID . See also universally unique
identifier (UUID).

Hash - based Message Authentication Code (HMAC) : A mechanism for message authentication
(2) using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash
function (for example, MD5 and SHA - 1) in combin ation with a secret shared key. The
cryptographic strength of HMAC depends on the properties of the underlying hash function.

Information Rights Management (IRM) : A technology that provides persistent protection to

digital data by using encryption, certificates , and authentication (2). Authorized recipients or
users acquire a license to gain access to the protected files according to the rights or business
rules that are set by the content owner.

language code identifier (LCID) : A 32 -bit number that identifies the user interface human

language dialect or variation that is supported by an application or a client computer.

little - endian : Multiple -byte values that are byte -ordered with the least sign ificant byte stored in

the memory location with the lowest address.

MD5 : A one -way, 128 -bit hashing scheme that was developed by RSA Data Security, Inc., as
described in [RFC1321] .

OLE compoun d file : A form of structured storage, as described in [MS -CFB] . A compound file
allows independent storages and streams to exist within a single file.

protected content : Any content or information, such as a file, Internet message, or other object
type, to which a rights -management usage policy is assigned and is encrypted according to that

policy. See also Info rmation Rights Management (IRM) .

RC4 : A variable key - length symmetric encryption algorithm. For more information, see
[SCHNEIER] section 17.1.

salt : An additional random quantity, specified as input to an encryption function that is used to
increase the st rength of the encryption.

SHA - 1 : An algorithm that generates a 160 -bit hash value from an arbitrary amount of input data,
as described in [RFC3174] . SHA -1 is used with the Digital Signature Al gorithm (DSA) in the

Digital Signature Standard (DSS), in addition to other algorithms and standards.

storage : An element of a compound file that is a unit of containment for one or more storages and
streams, analogous to directories in a file system, as d escribed in [MS -CFB].

stream : An element of a compound file, as described in [MS -CFB]. A stream contains a sequence
of bytes that can be read from or written to by an application, and they can exist only in
storages.

transform : An operation that is perfo rmed on data to change it from one form to another. Two

examples of transforms are compression and encryption.

Unicode : A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODE5.0.0/2007]
provides three forms (UTF -8, UTF -16, and UTF -32) and seven schemes (UTF -8, UTF -16, UTF -16
BE, UTF-16 LE, UTF -32, UTF -32 LE, and UTF -32 BE).

http://go.microsoft.com/fwlink/?LinkId=90460
http://go.microsoft.com/fwlink/?LinkId=89824
http://go.microsoft.com/fwlink/?LinkId=90275
%5bMS-CFB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90408
http://go.microsoft.com/fwlink/?LinkId=154659

10 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Uniform Resource Identifier (URI) : A string that identifies a resource. The URI is an addressing
mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI):

Generic Syntax [RFC3986] .

Uniform Resource Locator (URL) : A string of characters in a standardized format that identifies

a document or resource on the World Wide Web. The format is as specified in [RFC1738] .

UTF - 8 : A byte -oriented standard for encoding Unicode characters, defined in the Unicode standard.
Unless specified otherwise, this term refers to the UTF -8 encoding form specified in
[UNICODE 5.0.0/2007] section 3.9.

X.509 : An ITU -T standard for public key infrastructure subsequently adapted by the IETF, as
specified in [RFC3280].

XOR obfuscation : A type of file encryption that helps protect private data by using an exclusive or

bitwise operati on. This is done by adding a mathematical expression that prevents a simple
reverse -engineering process.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of t he referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com . We will
assist you in finding the relevant information.

[BCMO800 -38A] National Institute of Standards and Technology, "Recommendation for Block Cipher
Modes of Operation: Methods and Techniques", NIST Special Publication 800 -38A, December 2001,
http://csrc.nist.gov/publications/nistpubs/800 -38a/sp800 -38a.pdf

[Can -XML-1.0] Boyer, J., "Canonical XML Version 1.0", W3C Recommendation, March 2001,
http ://www.w3.org/TR/2001/REC -xml -c14n -20010315

[DRAFT -DESX] Simpson, W.A. and Baldwin R., "The ESP DES -XEX3-CBC Transform", July 1997,
http://tools.ietf.org/html/draft - ietf - ipsec -ciph -desx -00

[ECMA -376] ECMA International, "Office Open XML File Formats", 1st Edition, ECMA -376, December
2006, http://www.ecma - international.org/publications/standards/Ecma -376.htm

[ISO/IEC 10118] Inte rnational Organization for Standardization, "Hash - functions -- Part 3: Dedicated
hash - functions", March 2004,

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.ht m?csnumber=39876

[ITUX680 -1994] ITU -T, "Information Technology - Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation", ITU -T Recommendation X.680, July 1994, http://www.itu. int/rec/T -
REC-X.680 -199407 -S/en

[MS -CFB] Microsoft Corporation, " Compound File Binary File Format ".

[MS -DOC] Microsoft Corporation, " Word Binary File Format (.doc) Structure Specification ".

http://go.microsoft.com/fwlink/?LinkId=90453
http://go.microsoft.com/fwlink/?LinkId=90287
http://go.microsoft.com/fwlink/?LinkId=90317
http://msdn.microsoft.com/en-us/library/dn781092.aspx
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=113491
http://go.microsoft.com/fwlink/?LinkId=120197
http://go.microsoft.com/fwlink/?LinkId=128905
http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=120478
http://go.microsoft.com/fwlink/?LinkId=120478
%5bMS-CFB%5d.pdf
%5bMS-DOC%5d.pdf

11 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

[M S-DTYP] Microsoft Corporation, " Windows Data Types ".

[MS -OSHARED] Microsoft Corporation, " Office Common Data Types and Objects Structures ".

[MS -PPT] Microsoft Corporation, " PowerPoint Binary File Format (.ppt) Structure Specification ".

[MS -RMPR] Microsoft Corporation, " Rights Management Services (RMS): Client - to -Server Protocol ".

[MS -UCODEREF] Microsoft Corporation, " Windows Protocols Unicode Reference ".

[MS -XLSB] Microsoft Corporation, " Excel Binary File Format (.xlsb) Structure Specification ".

[MS -XLS] Microsoft Corporation, " Excel Binary File Format (.xls) Structure ".

[RFC1319] Kaliski, B., "The MD2 Message -Digest Algorithm", RFC 1319, April 1992, http://www.rfc -

editor.org/rfc/rfc1319.txt

[RFC1320] Rivest, R., "The MD4 Message -Digest Algorithm", RFC 1320, April 1992,

http://www.ietf.org/rfc/rfc1320.txt

[RFC1851] Karn, P., Metzger, P., and Simpson, W., "The ESP Triple DES Transform", RFC 1851,
September 1995, http://www.rfc -editor.org/rfc/rfc1851.txt

[RFC2104] Krawczyk, H., Bellare, M., and Canetti, R., "HMAC: Keyed -Hashing for Message
Authentication", RFC 2104, February 1997, http://www.ietf.org/rfc/rfc2104.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

[RFC2268] Rivest, R., "A Description of the RC2(r) Encryption Algorithm", RFC 2268, March 1998,
http://www.rfc -editor.org/rfc/rfc2268. txt

[RFC2822] Resnick, P., Ed., "Internet Message Format", RFC 2822, April 2001,
http://www.ietf.org/rfc/rfc2822.txt

[RFC2898] Kaliski, B., "PKCS #5: Password -Based Cryptography Specification Version 2.0", RFC 2898,
September 2000, http://www.rfc -editor.org/rfc/rfc2898.txt

[RFC3280] Housley, R., Polk, W., Ford, W., and Solo, D., "Internet X.509 Public Key Infrastructure

Certificat e and Certificate Revocation List (CRL) Profile", RFC 3280, April 2002,
http://www.ietf.org/rfc/rfc3280.txt

[RFC3447] Jonsson, J. and Kaliski, B., "Public -Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1", RFC 3447, February 2003,

http://www.ietf.org/rfc/rfc3447.txt

[RFC4634] Eastlake III, D. and Hansen, T., "US Secure Hash Algorithms (SHA and HMAC -SHA)", RFC
4634, July 2006, http://www.ietf.org/rfc/rfc4634.txt

[W3C -XSD] World Wide Web Consortium, "XML Schema Part 2: Datatypes Second Edition", October

2004, http://www.w3.org/TR/2004/REC -xmlschema -2-20041028

[XAdES] ETSI, "XML Advanced Electronic Signatures (XAdES)", ETSI TS 101 903 V1.3.2,
http://uri.etsi.org/01 903/v1.3.2/

[XMLDSig] Bartel, M., Boyer, J., Fox, B., et al., "XML -Signature Syntax and Processing", W3C
Recommendation, February 2002, http://www.w3.org/TR/2002/REC -xmldsig -core -20020212/

%5bMS-DTYP%5d.pdf
%5bMS-OSHARED%5d.pdf
%5bMS-PPT%5d.pdf
%5bMS-RMPR%5d.pdf
%5bMS-UCODEREF%5d.pdf
%5bMS-XLSB%5d.pdf
%5bMS-XLS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90273
http://go.microsoft.com/fwlink/?LinkId=90273
http://go.microsoft.com/fwlink/?LinkId=90274
http://go.microsoft.com/fwlink/?LinkId=128901
http://go.microsoft.com/fwlink/?LinkId=90314
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90330
http://go.microsoft.com/fwlink/?LinkId=90385
http://go.microsoft.com/fwlink/?LinkId=119708
http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=90422
http://go.microsoft.com/fwlink/?LinkId=90486
http://go.microsoft.com/fwlink/?LinkId=90563
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=130861

12 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

1.2.2 Informative References

[ISO/IEC29500 -1:2011] ISO/IEC, "Information Technology -- Document description and processing
languages -- Office Open XML File Formats -- Part 1: Fundamentals and Markup Language Reference",

ISO/IEC 29500 -1:2011, 2011,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=59575

[MSDN -CAB] Microsoft Corporation, "Microsoft Cabinet For mat", March 1997,
http://msdn.microsoft.com/en -us/library/bb417343.aspx

1.3 Overview

1.3.1 Data Spaces

The data spaces structure describes a consistent method of storing content in OLE compound files
that has been transformed in some way. The structure stor es both the protected content and
information about the transforms that have been applied to the content. By storing all of this

inf ormation inside an OLE compound file, client software has all of the information required to read,
write, or manipulate the content. A standard structure of streams and storages allows various
software components to interact with the data in a consistent manner.

The data spaces structure allows client applications to describe one or more arbitrary transforms. Each
transform represents a single arbitrary operation to be performed on a set of storages or streams in
the original document content. One or more transforms can then be composited into a data space
definition. Data sp ace definitions can then be applied to arbitrary storages or streams in the original
document content in the data space map (section 2.1).

Because of the layers of indirection between transforms a nd document content, different transforms

can be applied to different parts of the document content, and transforms can be composited in any
order.

The following figure illustrates the relationships between the DataSpaceMap stream, the
DataSpaceInfo storag e, the TransformInfo storages, and the protected content. Note that other

streams and storages exist in this file format; this figure describes only the relationships between
these storages and streams.

http://go.microsoft.com/fwlink/?LinkId=252374
http://go.microsoft.com/fwlink/?LinkId=226293

13 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Figure 1 : Relationships am ong the DataSpaceMap stream, the DataSpaceInfo storage, the

TransformInfo storages, and the protected content

1.3.2 Information Rights Management Data Space

The Information Rights Management Data Space (IRMDS) structure is used to enforce a rights

management policy applied to a documen t. The structure defines a transform that is used to encrypt
document content, and it defines a second transform that can be used for certain document types to
compress document content.

The original document content is transformed through encryption and p laced in a storage not normally
accessed by the application. When needed, the application uses the transforms defined in the
document to decrypt the protected content.

14 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

This structure is an implementation of the data spaces structure. Therefore, implementin g the
structure implies storing document content in an OLE compound file.

Applications that implement this structure will typically store a second document in the OLE compound
file called the placeholder document . The placeholder document is place into the streams or storages

normally identified by the application as containing document content, such that an application that
does not detect the IRMDS structure will instead open the placeholder document.

Applications that implement this structure will typic ally try to follow the licensing limitations placed on
a document. Typical licensing limitations include the right to view, print, edit, forward, or view rights
data, as described in [MS -RMPR].

The following figure shows th e specific storages, streams, structures, and relationships among them
that are created when the IRMDS structure is used in an ECMA -376 document [ECMA -376] .

Figure 2 : An ECMA - 376 word processing document with the IRMDS structure applied

%5bMS-RMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=200054

15 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

1.3.3 Encryption

Password -protected documents can be created by using one of four mechanisms:

Á XOR obfuscation .

Á 40 -bit RC4 encryption.

Á Cryptographic Application Progr amming Interface (CAPI) or CryptoAPI encryption.

Á ECMA-376 document encryption [ECMA -376] , which can include one of three approaches:

Á Standard encryption: This approach uses a binary Encryptio nInfo structure. It uses
Advanced Encryption Standard (AES) as an encryption algorithm and SHA - 1 as a hashing
algorithm.

Á Agile encryption: This approach uses an XML EncryptionInfo structure. The encryption and

hashing algorithms are specified in the structure and can be for any encryption supported on
the host computer.

Á Extensible encryption: This approach uses an extensible mecha nism to allow arbitrary
cryptographic modules to be used.

1.3.3.1 XOR Obfuscation

XOR obfuscation is performed on portions of Office binary documents. The normal streams contained
within the document are modified in place. For more information about how an application can
determine whether XOR obfuscation is being used and the placement of the password verifier see
[MS -XLS] and [MS -DOC] .

There are two methods for performing XOR obfuscation, known as Method 1 and Method 2. Method 1

specifies structures and procedures used by the Excel Binary File Format (.xls) Structure [MS -XLS],
and Method 2 specifies structures and procedures used by the Word Binary File Format (.doc)
Structure [MS -DOC].

1.3.3.2 40 -bit RC4 Encryption

40 -bit RC4 encryption is performed on portions of Office binary documents. For more information
about how to determine whether 40 -bit RC4 encrypt ion is being used and the placement of the
password verifier, see [MS -XLS] and [MS -DOC] . The same mechanisms for generating the password
verifier, deriving the encryption key , and encrypting data are used for all file formats supporting 40 -
bit RC4 encryption.

1.3.3.3 CryptoAPI RC4 Encryption

CryptoAPI RC4 encryption is performed on portions of Office binary documents. The documents will
contain a new stream to contain encrypted information but can also encr ypt other streams in place.
For more information about how to determine whether CryptoAPI RC4 encryption is being used and
the placement of the password verifier, see [MS -XLS] , [MS -DOC] , and [MS -PPT]. The same

mechanisms for generating the password verifier, storing data specifying the cryptography, deriving
the encryption key, and encrypting data are used for all file formats supporting CryptoAPI RC4
encryption.

1.3.3.4 ECMA -376 Document Encryption

Encrypted ECMA -376 do cuments [ECMA -376] use the data spaces functionality (section 1.3.1) to
contain the entire document as a single stream in an OLE compound file. All ECMA -376 documents
[ECMA -376] adhere to the approaches specified in this document and do not require knowledge of

http://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-XLS%5d.pdf
%5bMS-DOC%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-DOC%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-DOC%5d.pdf
%5bMS-PPT%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=200054

16 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

application -specific behavior to perform encryption operations. The overall approach is very similar to
that use d by IRMDS (section 1.3.2).

1.3.4 Write Protection

The application of password -based write protection for Office binary documents is specified in section
2.4.2 . Write -protected binary documents vary according to the file format. A summary of each type
follows:

Á The Excel Binary File For mat (.xls) [MS -XLS] : The password is converted to a 16 -bit password

verifier, stored in the document as described in [MS -XLS], and the document is then encrypted as
described in [MS -XLS] and in this specification. If the use r does not supply an encryption
password, a fixed password is used.

Á The Word (.doc) Binary File Format [MS -DOC] : The password is stored in the clear, as described in
[MS -DOC], and the document is not encrypted.

Á The PowerPoin t (.ppt) Binary File Format [MS -PPT]: The password is stored in the clear, as

described in [MS -PPT], and the document can then be encrypted as described in [MS -PPT] and in

this specification. If encryption is used and the us er does not supply an encryption password, a
fixed password is used.

1.3.5 Digital Signatures

Office binary documents can be signed by using one of the following methods:

Á A binary format stored in a _signatures storage. This approach is described in section 2.5.1 .

Á A format that uses XML -Signature Syntax and Processing, as described in [XMLDSig] , stored in an
_xmlsignatures storage. This approach is described in sections 2.5.2 and 2.5.3 .

1.3.6 Byte Ordering

All data and structures in this file format are assumed to be in little - endian format.

1.3.7 String Encoding

In this file format, several storages and stream names include the strings "0x01", "0x05", "0x06", and

"0x09".These strings are not literally included in the name. Instead, they represent the ASCII
characters with hexadecimal values 0x01, 0x05 , 0x06, and 0x09 respectively.

1.3.8 OLE Compound File Path Encoding

Paths to specific storages and strea ms in an OLE compound file are separated by the backslash (\).
The backslash is a delimiter between parts of the path and, therefore, is not part of the name of any
specific storage or stream. Paths that begin with a backslash signify the root storage of t he OLE
compound file.

1.3.9 Pseudocode Standard Objects

The pseudocode in this document refers to several objects wit h associated properties. Accessing a
property of an object is denoted with the following syntax: Object.Property . This section describes

the properties of each object as it is used in this document.

%5bMS-XLS%5d.pdf
%5bMS-DOC%5d.pdf
%5bMS-PPT%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=130861

17 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

1.3.9.1 Array

An array is a collection of zero or more child objects of uniform type, where each child is addressable
by using an unsigned integer index. Referencing a child object of an arra y is denoted by using the

following syntax: array[index] .

Indexes are zero -based and monotonically increase by 1. Therefore, Index 0 references the first
element in an array, and Index 1 references the second child in the array.

Arrays have the following property:

Á Length: The number of child objects in the array.

1.3.9.2 String

A string is an array of ASCII characters. As in arrays, individual characters in the string are
addressable by using a zero -based index.

1.3.9.3 Storage

A storage is an OLE storage as described by [MS -CFB] . Storages have the following properties:

Á Name: A unique identifier for the storage within its parent, as described in [MS -CFB].

Á GUID: A 16 -byte identifier associated with the storage, as described in [MS -CFB].

Á Children: Zero or more child storages or streams. Each child is addressable by its name.

1.3.9.4 Stream

A stream is an OLE storage as described in [MS -CFB] . Streams have the following properties:

Á Name: A unique identifier for the stream within its parent, as described in [MS -CFB].

Á Data: An array of zero or more unsigned 8 -bit integers containing the data in the stream.

1.4 Relationship to Protocols and Other Structures

This file format builds on the file format as described in [MS -CFB] .

Some structures in this specification reference structures described in [MS -RMPR]. In addition, the
protocols described in [MS -RMPR] are necessary for obtaining the information requ ired to understand
the transformed data in a document with a rights management policy applied.

For encryption operations, this specification also requires an understanding of the file formats as

described in [MS -XLS] , [MS -PPT], or [MS -DOC] .

1.5 Applicability Statement

1.5.1 Data Spaces

The data spaces s tructure specifies a set of storages and streams within an OLE compound file, the
structures contained in them, and relationships among them. OLE compound files that conform to the
data spaces structure can also have other storages or streams in them that are not specified by this
file format.

%5bMS-CFB%5d.pdf
%5bMS-CFB%5d.pdf
%5bMS-CFB%5d.pdf
%5bMS-RMPR%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-PPT%5d.pdf
%5bMS-DOC%5d.pdf

18 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

1.5.2 Information Rights Management Data Space

The IRMDS structure is required when reading, modifying, or creating documents with rights
management policies ap plied.

1.5.3 Encryption

The ECMA -376 [ECMA -376] encryption structure, streams, and storages are required when encrypting
ECMA-376 documents. When binary file types are encrypted, either CryptoAPI RC4 encryption, RC4
encryption, or XOR obfuscation is required.

1.6 Versioning and Localization

None.

1.7 Vendor -Extensible Fields

The data spaces structure allows vendors to implement arbitrary transforms, data space definitions,
and data space maps. In this way, the structure can be used to represent any arbitrary transformation
to any arbitrary data.

The IRMDS structure does not contain any vendor -extensible fields.

ECMA-376 document encryption [ECMA -376] MAY be extended if eit her additional CryptoAPI providers
are installed or extensible encryption is used.

http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=200054

19 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2 Structures

2.1 Data Spaces

The data spaces structure consists of a set of inte rrelated storages and streams in an OLE compound

file as specified in [MS -CFB] .

Software components that interact with data spaces MUST check the DataSpaceVersionInfo
structure (section 2.1.5) contained in the \ 0x06DataSpaces \ Version stream for the version
numbers and respect the following rules.

Data space readers:

Á Data space readers MUST read the protect ed content when the reader version is less than or

equal to the highest data spaces structure version understood by the software component.

Á Readers MUST NOT read the protected content when the reader version is greater than the

highest data spaces structur e version understood by the software component.

Data space updaters:

Á Data space updaters MUST preserve the format of the protected content when the updater
version is less than or equal to the h ighest data spaces structure version understood by the
software component.

Á Updaters MUST NOT change the protected content when the updater version is greater than the
highest data spaces structure version understood by the software component.

Data space wr iters:

Á Data space writers MUST set the writer version to "1.0".

Á Writers MUST set the updater version to "1.0".

Á Writers MUST set the reader version to "1.0".

2.1.1 File

Every document that conforms to the data spaces structure (section 2.1) MUST be an OLE compound
File structure as specified in [MS -CFB] . The File structure MUST contain the following storages and
streams:

Á \ 0x06DataSpaces storage: A storage that contains all of the necessary information to
understand the transforms applied to original document content in a given OLE compound file.

Á \ 0x06DataSpaces \ Version stream: A stream containing the DataSpaceVersionInfo
structure, as specified in section 2.1.5 . This stream specifies the version of the data s paces
structure used in the file.

Á \ 0x06DataSpaces \ DataSpaceMap stream: A stream containing a DataSpaceMap structure
as specified in section 2.1.6 . This stream associates protected content with the data space

definition used to transform it.

Á \ 0x06DataSpaces \ DataSpaceInfo storage: A storage containing the data space definitions
used in the file. This storage MUST contain one or more streams, each of which contains a
DataSpaceDefinition structure as s pecified in section 2.1.7 . The storage MUST contain exactly
one stream for each DataSpaceMapEntry structure (section 2.1.6.1) in the

%5bMS-CFB%5d.pdf
%5bMS-CFB%5d.pdf

20 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

\ 0x 06DataSpaces \ DataSpaceMap stream (section 2.2.1). The name of each stream MUST be
equal to the DataSpaceName field of exactly one DataSpaceMapEntry structure contained in

the \ 0x06DataSpaces \ DataS paceMap stream.

Á Transformed content streams and storages: One or more storages or streams containing

protected content. The transformed content is associated with a data space definition by an entry
in the \ 0x06DataSpaces \ DataSpaceMap stream.

Á \ 0x06DataSpaces \ TransformInfo storage: A storage containing definitions for the transforms
used in the data space definitions stored in the \ 0x06DataSpaces \ DataSpaceInfo storage as
specified in section 2.2.2 . The stream contains zero or more definitions for the possible transforms
that can be applied to the data in content streams.

Every transform referenced from a data space MUST be defined in a child storage of the

\ 0x06DataSpaces \ TransformInfo storage (section 2.2.3), each of which is called a transform
storage . Transform storages MUST have a valid storage name.

Each transform storage identifies an algorithm used to transform data and an y parameters needed by
that algorithm. Transform storages do not contain actual implementations of transform algorithms but
merely definitions and parameters. It is presumed that all software components that interact with the
protected content have access to an existing implementation of the transform algorithm.

Every transform storage MUST contain a stream named "0x06Primary". The 0x06Primary stream
MUST begin with a TransformInfoHeader structure (section 2.1.8). Transform storages can contain
other streams or storages if needed by a particular transform.

2.1.2 Length -Prefixed Padded Unicode String (UNICODE -LP-P4)

The Length -Prefixed Padded Unicode String structure (UNICODE - LP - P4) contains a length -prefixed
Unicode string, which MUST be padded so it is a multiple of 4 bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Data (variable)

...

Padding (variable)

...

Length (4 bytes): An unsigned integer that specifies the size, in bytes, of the Data field. It MUST be

a multiple of 2 bytes.

Data (variable): A Unicode string containing the value of the UNICODE - LP - P4 structure. It MUST
NOT be null - terminated.

Padding (variable): A set of bytes that MUST be of the correct size such that the size of the
UNICODE - LP - P4 structure is a multiple of 4 bytes. If Padding is present, it MUST be exactly 2
bytes long, and each byte MUST be 0x00.

21 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2.1.3 Length -Prefixed UTF -8 String (UTF -8 -LP-P4)

The Length -Prefixed UTF -8 String structure (UTF - 8 - LP - P4) contains a length -prefixed UTF - 8 string,
padded to always use a multiple of 4 bytes.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Data (variable)

...

Padding (variable)

...

Length (4 bytes): An unsigned integer that specifies the size, in bytes, of the Data field.

Data (variable): A UTF-8 string that specifies the value of the UTF - 8 - LP - P4 structure. It MUST NOT
be null - terminated.

Padding (variable): A set of bytes that MUST be of correct siz e such that the size of the UTF - 8 - LP -

P4 structure is a multiple of 4 bytes. If Padding is present, each byte MUST be 0x00. If the value
of the Length field is exactly 0x00000000, the Data field specifies a null string, and the entire
structure uses exactly 4 bytes. If the value of the Length field is exactly 0x00000004, the Data
field specifies an empty string, and the entire structure also uses exactly 4 bytes.

2.1.4 Version

The Version structure specifies the version of a product or feature. It contains a major and a minor
version number. When comparing version numbers, vMajor MUST be considered the most significant
component and vMinor MUST be conside red the least significant component.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

vMajor vMinor

vMajor (2 bytes): An unsigned integer that specifies the major version number.

vMinor (2 bytes): An unsigned integer that specifies the minor version number.

2.1.5 DataSpaceVersionInfo

The DataSpaceVersionInfo structure indicates the version o f the data spaces structure used in a
given file.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FeatureIdentifier (variable)

22 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

...

ReaderVersion

UpdaterVersion

WriterVersion

FeatureIdentifier (variable): A UNICODE - LP - P4 structure (section 2.1.2) that specifies the
functionality for which the DataSpaceVersionInfo structure specifies version information. It
MUST be "Microsoft.Container.DataSpaces".

ReaderVersion (4 bytes): A Version structure (section 2.1.4) that specifies the reader version of
the data spaces structure (section 2.1). ReaderVersio n.vMajor MUST be 1.
ReaderVersion.vMinor MUST be 0.

UpdaterVersion (4 bytes): A Version structure that specifies the updater version of the data

spaces structure. UpdaterVersion.vMajor MUST be 1. UpdaterVersion.vMinor MUST be 0.

WriterVersion (4 bytes): A Version structure that specifies the writer version of the data spaces
structure. WriterVersion.vMajor MUST be 1. WriterVersion.vMinor MUST be 0.

2.1.6 DataSpaceMap

The DataSpaceMap structure associates protected content with data space definitions. The data
space definition, in turn, describes the series of transforms that MUST be applied to that protected
content to restor e it to its original form.

By using a map to associate data space definitions with content, a single data space definition can be
used to define the transforms applied to more than one piece of protected content. However, a given
piece of protected content can be referenced only by a single data space definition.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HeaderLength

EntryCount

MapEntries (variable)

...

HeaderLength (4 bytes): An unsigned integer that specifies the number of bytes in the

DataSpaceMap structure before the first entry in the MapEntries array. It MUST be equal to
0x00000008.

EntryCount (4 bytes): An unsigned integer that specifies the number of DataSpaceMapEntry it ems
(section 2.1.6.1) in the MapEntries array.

MapEntries (variable): An array of one or more DataSpaceMapEntry structures.

23 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2.1.6.1 DataSpaceMapEntry Structure

The DataSpaceMapEntry structure associates protected content with a specific data space definition.
It is contained within the DataSpaceMap structure (section 2.1.6).

Reference components MUST be listed from the most general ðthat is, storages ðto the most specific ð
that is, streams. For example, a stream titled "Chapter 1" in a substorage called "Book" o ff the root
storage of an OLE compound file would have two reference components: "Book" and "Chapter 1", in
that order. The simplest content stream reference is one with a single reference component indicating
the name of a stream in the root storage of th e OLE compound file.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

ReferenceComponentCount

ReferenceComponents (variable)

...

DataSpaceName (variable)

...

Length (4 bytes): An unsigned integer that specifies the size, in bytes, of the DataSpaceMapEntry
structure.

ReferenceComponentCount (4 bytes): An unsigned integer that specifies the number of

DataSpaceReferenceComponent items (section 2.1.6.2) in the ReferenceComponents array.

ReferenceComponents (variable): An array of one or more DataSpaceReferenceComponent
structures. Each DataSpaceReferenceComponent structure specifies the name of a storage or

stream containing protected content that is associated with the data space definition named in the
DataSpaceName field.

DataSpaceName (variable): A UNICODE - LP - P4 structure (section 2.1.2) that specifies the name
of the data space definition associated with the protected content specified in the
ReferenceComponents field. It MUST be equal to the name of a stream in the
\ 0x06DataSpaces \ DataSpaceInfo storage as specified in section 2.2.2 .

2.1.6.2 DataSpaceReferenceComponent Structure

The DataSpaceRe ferenceComponent structure stores the name of a specific storage or stream

containing protected content. It is contained within the DataSpaceMapEntry structure (section
2.1.6.1).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

ReferenceComponentType

24 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

ReferenceComponent (variable)

...

ReferenceComponentType (4 bytes): An unsigned integer that specifies whether the referenced
component is a stream or storage. It MUST be 0x00000000 for a stream or 0x00000001 for a
storage.

ReferenceComponent (variable): A UNICODE - LP - P4 structure (section 2.1.2) that specifies the
name of the stream or stora ge containing the protected content to be transformed. If

ReferenceComponentType is 0x00000000, then ReferenceComponent MUST be equal to the
name of a stream contained in the root storage of the OLE compound file. If
ReferenceComponentType is 0x00000001, t hen ReferenceComponent MUST be equal to the
name of a storage contained in the root storage of the OLE compound file.

2.1.7 DataSpaceDefinition

Each DataSpaceDefinition structure stores a data space definition. A document can contain more
than one data space definition ðfor example, if one content stream is both compressed and encrypted
while a sec ond stream is merely encrypted.

Each DataSpaceDefinition structure MUST be stored in a stream in the
\ 0x06DataSpaces \ DataSpaceInfo storage (section 2.2.2). The name of the stream MUST be

reference d by a DataSpaceReferenceComponent structure (section 2.1.6.2) within a
DataSpaceMapEntry structure (section 2.1.6.1) stored in the \ 0x0 6DataSpaces \ DataSpaceMap
stream (section 2.2.1).

TransformReferences MUST be stored in the reverse order in which they have been applied to the
protected content. When reversing the transformation , a software component will apply the
transforms in the order specified in the TransformReferences array.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HeaderLength

TransformReferenceCount

TransformReferences (variable)

...

HeaderLength (4 bytes): An unsigned integer that specifies the number of bytes in the
DataSpaceDefinition structure before the TransformReferences field. It MUST be

0x00000008.

TransformReferenceCount (4 bytes): An unsigned integer that specifies the numbe r of items in
the TransformReferences array.

TransformReferences (variable): An array of one or more UNICODE - LP - P4 structures (section
2.1.2) that specify the transforms associated with this data space definition. Each transform MUST
be equal to the name of a storage contained in the \ 0x06DataSpaces \ TransformInfo storage
(section 2.2.3 and 2.2.4).

25 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2.1.8 TransformInfoHeader

The TransformInfoHeader structure specifies the identity of a transform. Additional data or
structures can follow this header in a stream. See section 2.2.6 for an example of the usage of

additional data.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TransformLength

TransformType

TransformID (variable)

...

TransformName (variable)

...

ReaderVersion

UpdaterVersion

WriterVersion

TransformLength (4 bytes): An unsigned integer that specifies the number of bytes in this
structure before the TransformName field.

TransformType (4 bytes): An unsigned integer that specifies the type of transform to be applied. It
MUST be 0x00000001.

TransformID (variable): A UNICO DE- LP - P4 structure (section 2.1.2) that specifies an identifier
associated with a specific transform.

TransformName (variable): A UNICODE - LP - P4 structure that specifies the friendly name of the

tr ansform.

ReaderVersion (4 bytes): A Version structure (section 2.1.4) that specifies the reader version.

UpdaterVersion (4 bytes): A Version structure that specifies the updater version.

WriterVersion (4 bytes): A Version structure that specifies the writer version.

2.1.9 EncryptionTransformInfo

The EncryptionTransformInfo structure specifies the encryption used for ECMA -376 document
encryption [ECMA -376] .

http://go.microsoft.com/fwlink/?LinkId=200054

26 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionName (variable)

...

EncryptionBlockSize

CipherMode

Reserved

EncryptionName (variable): A UTF - 8 - LP - P4 structure (section 2.1.3) that specifies the name of

the encryption algorithm. The name MUST be the name of an encryption algorithm, such as "AES

128", "AES 192", or "AES 256". When used with extensible encryption, this value is specified by
the extensible encryption module.

EncryptionBlockSize (4 bytes): An unsigned integer that sp ecifies the block size for the encryption
algorithm specified by EncryptionName . It MUST be 0x00000010 as specified by the Advanced
Encryption Standard (AES). When used with extensible encryption, this value is specified by the
extensible encryption module .

CipherMode (4 bytes): A value that MUST be 0x00000000, except when used with extensible
encryption. When used with extensible encryption, this value is specified by the extensible
encryption module.

Reserved (4 bytes): A value that MUST be 0x00000004.

2.2 Information Rights Management Data Space

IRMDS defines several data sp ace definitions used to enforce rights management policies that have
been applied to a document. This structure is an extension of the data spaces structure specified in
section 2.1 .

IRMDS can be applied to the following types of documents:

Á Office binary documents

Á ECMA-376 documents [ECMA -376]

In each case, the protected content contains the original document transformed as specified by the
IRMDS structure. <1>

2.2.1 \ 0x06DataSpaces \ DataSpaceMap Stream

If t he original document content is an Office binary document:

Á The \ 0x06DataSpaces \ DataSpaceMap stream MUST contain a DataSpaceMap structure
(section 2.1.6) containing at least one DataSpaceMapEntry structure (section 2.1.6.1). The
DataSpaceMapEntry structure:

Á MUST have a DataSpaceName equal to "0x09DRMDataSpace".

http://go.microsoft.com/fwlink/?LinkId=200054

27 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Á MUST have exactly one ReferenceComponents entry with the name "0x09DRMContent" and
the type 0x00000000, which signifies a stream.

Á The \ 0x06DataSpaces \ DataSpaceMap stream MAY <2> contain a second
DataSpaceMapEntry structure in the DataSpaceMap structure. The secon d

DataSpaceMapEntry structure:

Á MUST have a DataSpaceName equal to "0x09LZXDRMDataSpace".

Á MUST have exactly one ReferenceComponents entry with the name
"0x09DRMViewerContent" and the type 0x00000000, which signifies a stream.

If the original document conten t is an ECMA -376 document [ECMA -376] :

Á The \ 0x06DataSpaces \ DataSpaceMap stream MUST contain a DataSpaceMap structure
containing exactly one DataSpaceMapEntry structure.

Á The DataSpaceMapEntry substructure:

Á MUST have a DataSpaceName equal to "DRMEncryptedDataSpace".

Á MUST have exactly one ReferenceComponents entry with the name "EncryptedPackage"
and the type 0x00000000, which signifies a stream.

2.2.2 \ 0x06DataSpaces \ DataSpaceInfo Storage

If the original document content is an Office binary document:

Á The \ 0x06DataSpaces \ DataSpaceInfo storage MUST contain a stream named
"0x09DRMDataSpace", which MUST contain a DataSpaceDefinition structure (section 2.1.7):

Á The DataSpaceDefinition structure MUST have exactly one TransformReferences entry,
which MUST be "0x09DRMTransform".

Á The \ 0x06DataSpaces \ DataSpaceInfo storage MAY <3> contain a stream named
"0x09LZXDRMDataSpace". If this stream exists, it MUST contain a DataSpaceDefinition
structure:

Á The DataSpaceDefinition structure MUST have exactly two TransformReferences entries.

Á The first TransformReferences entry MUST be "0x09DRMTransform".

Á The second TransformReferences entry MUST be "0x09LZXTransform".

If the original document content is an ECMA -376 document [ECMA -376] :

Á The \ 0x06DataSpaces \ DataSpaceInfo storage MUST contain a stream named
"DRMEncryptedDataSpace", which MUST contain a DataSpaceDefinition structure.

Á The DataSpaceDefinit ion structure MUST have exactly one TransformReferences entry, which

MUST be "DRMEncryptedTransform".

2.2.3 \ 0x06DataSpaces \ TransformInfo Storage for Office Binary Documents

If the original document content is an Office binary document, the
\ 0x06DataSpaces \ TransformInfo sto rage MUST contain one storage named "0x09DRMTransform".
The "0x09DRMTransform" storage MUST contain a stream named "0x06Primary". The "0x06Primary"
stream MUST contain an IRMDSTransformInfo structure (section 2.2.6). Within the
IRMDSTransformInfo structure, the following values MUST be set:

http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=200054

28 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Á TransformInfoHeader.TransformType MUST be 0x00000001.

Á TransformInfoHeader.TransformID MUST be "{C73DFACD -061F -43B0 -8B64 -

0C620D2A8B50}".

Á TransformInfoHeader.Tran sformName MUST be "Microsoft.Metadata.DRMTransform".

Á TransformInfoHeader.ReaderVersion MUST be "1.0".

Á TransformInfoHeader.UpdaterVersion MUST be "1.0".

Á TransformInfoHeader.WriterVersion MUST be "1.0".

The 0x09DRMTransform storage MUST also contain one or m ore end -user license streams as specified
in section 2.2.7 .

The \ 0x06DataSpaces \ TransformInfo storage MAY <4> contain a substorage named
"0x09LZXTransform". If the 0x09LZXTransform storage exists, it MUST contain a stream named

"0x06Primary". The 0x06Primary stream MUST contain a TransformInfoHeader structure (section

2.1.8). Within the TransformInfoHeader structure, the following values MUST be set:

Á TransformType MUST be 0x00000001.

Á TransformID MUST be "{86DE7F2B -DDCE-486d -B016 -405BBE82B8BC}".

Á TransformName MUST be "Microsoft.Metadata.CompressionTransfor m".

Á ReaderVersion MUST be "1.0".

Á UpdaterVersion MUST be "1.0".

Á WriterVersion MUST be "1.0".

2.2.4 \ 0x06DataSpaces \ TransformInfo Storage for ECMA -376 Documents

If the original document is an ECMA -376 document [ECMA -376] conforming to the IRMDS structure,

the \ 0x06DataSpaces \ TransformInfo storage MUST contain one storage named
"DRMEncryptedTransform". The "DRMEncryptedTransform" storage MUST contain a stream named
"0x06Primary". The "0x06Primary" stream MUST contain an IR MDSTransformInfo structure (section
2.2.6). Within the IRMDSTransformInfo structure, the following values MUST be set:

Á TransformInfoHeader.TransformType MUST be 0x00000001.

Á TransformInfoHeader.Tra nsformID MUST be "{C73DFACD -061F -43B0 -8B64 -

0C620D2A8B50}".

Á TransformInfoHeader.TransformName MUST be "Microsoft.Metadata.DRMTransform".

Á TransformInfoHeader.ReaderVersion MUST be 1.0.

Á TransformInfoHeader.UpdaterVersion MUST be 1.0.

Á TransformInfoHeader.Write rVersion MUST be 1.0.

The DRMEncryptedTransform storage MUST also contain one or more end -user license streams as
specified in section 2.2.7 .

http://go.microsoft.com/fwlink/?LinkId=200054

29 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2.2.5 ExtensibilityHeader

The ExtensibilityHeader structure provides a facility to allow an updated header with more
information to be inserted into a larger structure in the futur e. This structure consists of a single

element.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Length (4 bytes): An unsigned integer that specifies the size of the ExtensibilityHeader structure.
It MUST be 0x00000004.

2.2.6 IRMDSTransformInfo

The IRMDSTransformInfo structure specifies a specific transform that has been applied to protected
conte nt to enforce rights management policies applied to the document.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TransformInfoHeader (variable)

...

ExtensibilityHeader

XrMLLicense (variable)

...

TransformInfoHeader (variable): A TransformInfoHeader structure (section 2.1.8) that specifies

the identity of the transform applied.

ExtensibilityHeader (4 bytes): An ExtensibilityHeader structure (section 2.2.5).

XrMLLicense (variable): A UTF - 8 - LP - P4 structure (section 2.1.3) containing a valid XrML signed
issuance license as specified in [MS -RMPR] section 2.2.9.9 . The signed issuance license MAY <5>
contain the application -specific name -value attribute pairs name and id , as specified in [MS -
RMPR] section 2.2.9.7.6 , as part of the AUTHENTICATEDDATA element.

2.2.7 End -User License Stream

The end -user license stream contains cached use licenses.

The end -user license stream name MUST be prefixed with "EUL -", with a base -32 -encoded GUID as
the remainder of the stream name.

The license stream MUST consist of an EndUserLicenseHeader structure (section 2.2.9), followed b y
a UTF - 8 - LP - P4 string (section 2.1.3) containing XML specifying a certificate chain . The certificate
chain MUST include a use license with an enablingbits element containing the symmetric content key
encrypted with the user's RAC public key, as specified in [MS -RMPR] section 2.2.9.1.13 . The XML in

%5bMS-RMPR%5d.pdf
http://msdn.microsoft.com/en-us/library/f2adc901-a61c-48ed-9cac-95ad61751230/
http://msdn.microsoft.com/en-us/library/77752c42-9ce8-44a8-862b-222f780eb3a1/
%5bMS-RMPR%5d.pdf
http://msdn.microsoft.com/en-us/library/4b093a0a-a16f-4f11-9866-eca874b1598a/

30 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

this string is derived from a certificatechain element as specified in [MS -RMPR] section 2.2.3.2 . Each
XrML certificate or license from a certificate element as specified in [MS -RMPR] section 2.2.3.1 is

encoded as a base64 -encoded Unicode string.

The certificate chain has been transformed in the following manner:

1. For each certificate element in the certificate chain:

1. The XrML content of the certificate eleme nt is encoded as Unicode.

2. Each resulting string is subsequently base64 -encoded.

3. Each resulting string is then placed in a certificate element.

2. The resulting collection of new certificate elements is accumulated in a certificatechain
element.

3. The XML header <?xml version="1.0"?> is prefixed to the resulting certificatechain element.

4. The resulting XML is stored in the stream as a UTF - 8 - LP - P4 string.

2.2.8 LicenseID

A LicenseID specifies the identity of a user as a Unicode string. The string MUST be of the form
"Windows:< emailaddr >" or "Passport:< emailaddr >", where emailaddr represents a valid email
address as specified in [RFC2822] .

2.2.9 EndUserLicenseHeader

The EndUserLicenseHeader structure is a container for a LicenseID (section 2.2.8) as specified in
[MS -RMPR].

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

ID_String (variable)

...

Length (4 bytes): An unsigned integer that specifies the size of the EndUserLicenseHeader
structure.

ID_String (variable): A UTF - 8 - LP - P4 structure (section 2.1.3) that contains a base64 -encoded
Unicode LicenseID .

2.2.10 Protected Content Stream

The protected content stream MUST be contained within the root storage. If the original document

content is an ECMA -376 document [ECMA -376] , the stream MUST be named "EncryptedPackage". For
all other original document c ontent types, it MUST be named " \ 0x09DRMContent".

The protected content stream has the following structure.

http://msdn.microsoft.com/en-us/library/328ee37c-c01d-4683-90ee-b7804ab5705d/
http://msdn.microsoft.com/en-us/library/3b9a3021-c765-48b2-914e-af7fa811d091/
http://go.microsoft.com/fwlink/?LinkId=90385
%5bMS-RMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=200054

31 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

...

Contents (variable)

...

Length (8 bytes): An unsigned 64 -bit integer that specifies the size, in bytes, of the plaintext data
that is stored encrypted in the Contents field.

Contents (variable): Specifies the protected content. The protected content MUST be encrypted or
decrypted with the content symmetric key encrypted for the user in the end -user license as

specified in [MS -RMPR]. Protected content MUST be encrypted or decrypted using AES -128, a 16 -
byte block size, electronic codebook (ECB) mode, and an initialization vector of all zeros.

2.2.11 Viewer Content Stream

The viewer content stream MAY <6> be present. The purpose of the viewer content stream is to
provide a MIME Encapsulation of Aggregate HTML Documents (MHTML) representation of the
document to enable an applica tion that cannot parse the protected content stream (section 2.2.10) to

present a read -only representation of the document to the user. If the viewer content stream is
present, the stream MUST be named " \ 0x09DRMViewerContent".

The viewer content stream has the following structure.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

...

Contents (variable)

...

Length (8 bytes): An unsigned 64 -bit integer that specifies the size, in bytes, of the compressed
plaintext data stored encrypted in the Contents field.

Contents (variable): The MHTML representation of the protected content. The protected content

MUST be encrypted or decry pted as specified in [MS -RMPR]. Once decrypted, the plaintext MUST
be decompressed with the LZX compression algorithm, as described in [MSDN -CAB] .

2.3 Encryption

This section specifies encryption and obfuscation. The four different techniques are:

Á ECMA-376 encryption [ECMA -376] , which leverages the data spaces storages specified in section
2.1 .

%5bMS-RMPR%5d.pdf
%5bMS-RMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=226293
http://go.microsoft.com/fwlink/?LinkId=200054

32 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Á CryptoAPI RC4 encryption.

Á RC4 encryption.

Á XOR obfuscation.

ECMA-376 encryption [ECMA -376] also includes en cryption using a third -party cryptography

extension, which will be called extensible encryption in the remainder of this document.

2.3.1 EncryptionHeaderFlags

The EncryptionHeaderFlags structure specifies properties of the encryption algorithm used. It MUST

be contained within an EncryptionHeader structure (section 2.3.2).

If the fCryptoAPI bit is set and the fAES bit is not set, RC4 encryption MUST be used. If the fAES
encryption bit is set, a block cipher that supports ECB mode MUST be used. For compatibility with
current implementations, AES encryption with a key length of 128, 192, or 256 bits SHOULD <7> be
used.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

A B C D E F Unused

A ï Reserved1 (1 bit): A value that MUST be 0 and MUST be ignored.

B ï Reserved2 (1 bit): A value that MUST be 0 and MUST be ignored.

C ï fCryptoAPI (1 bit): A flag that specifies whether CryptoAPI RC4 or ECMA -376 encryption [ECMA -
376] is used. It MUST be 1 unless fExternal is 1. If fExternal is 1, it MUST be 0.

D ï fDocProps (1 bit): A value that MUST be 0 if document properties are encrypted. The encryption
of do cument properties is specified in section 2.3.5.4 .

E ï fExternal (1 bit): A value that MUST be 1 if extensible encryption is used. If this value is 1, the
value of every other field in this struct ure MUST be 0.

F ï fAES (1 bit): A value that MUST be 1 if the protected content is an ECMA -376 document [ECMA -

376]; otherwise, it MUST be 0. If the fAES bit is 1, the fCryptoAPI bit MUST also be 1.

Unused (26 bits): A value that is undefined and MUST be i gnored.

2.3.2 EncryptionHeader

The EncryptionHeader structure is used by ECMA -376 document encryption [ECMA -376] and Office
binary document RC4 CryptoAPI encryption, as defined in section 2.3.5 , to specify encryption
properties for an encrypted stream.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

SizeExtra

AlgID

http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=200054

33 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

AlgIDHash

KeySize

ProviderType

Reserved1

Reserved2

CSPName

...

Flags (4 bytes): An EncryptionHeaderFlags structure, as specified in section 2.3.1 , that specifies
properties of the encryption algorithm used.

SizeExtra (4 bytes): A field that is reserved and for which the value MUST be 0x00000000.

AlgID (4 bytes): A signed integer that sp ecifies the encryption algorithm. It MUST be one of the
values described in the following table.

Value Algorithm

0x00000000 Determined by Flags

0x00006801 RC4

0x0000660E 128 -bit AES

0x0000660F 192 -bit AES

0x00006610 256 -bit AES

The Flags field and AlgID field contain related values and MUST be set to one of the combinations
in the following table.

Flags.fCryptoAPI Flags.fAES Flags.fExternal AlgID Algorithm

0 0 1 0x00000000 Determined by the
application

1 0 0 0x00000000 RC4

1 0 0 0x00006801 RC4

1 1 0 0x00000000 128 -bit AES

1 1 0 0x0000660E 128 -bit AES

1 1 0 0x0000660F 192 -bit AES

1 1 0 0x00006610 256 -bit AES

AlgIDHash (4 bytes): A signed integer that specifies the hashing algorithm together with the
Flags.fExternal bit. It MUST be one of the combinations in the following table.

AlgIDHash Flags.fExternal Algorithm

0x00000000 1 Determined by the application

34 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

AlgIDHash Flags.fExternal Algorithm

0x00000000 0 SHA-1

0x00008004 0 SHA-1

KeySize (4 bytes): An unsigned integer that specifies the number of bits in the encryption key. It
MUST be a multiple of 8 and MUST be one of the values in the following table.

Algorithm Value Comment

Any 0x00000000 Determined by Flags

RC4 0x00000028 ï 0x00000080 (inclusi ve) 8-bit increments

AES 0x00000080, 0x000000C0, 0x00000100 128 -bit, 192 -bit, or 256 -
bit

If the Flags field does not have the fCryptoAPI bit set, the KeySize field MUST be 0x00000000.
If RC4 is used, the value MUST be compatible with the chosen cryptographic service provider
(CSP) .

ProviderType (4 bytes): An implementation -specific value that corresponds to constants accepted
by the specified CSP. It MUST be compatible with the chosen CS P. It SHOULD <8> be one of the
following values.

Algorithm Value Comment

Any 0x00000000 Determined by Flags

RC4 0x00000001

AES 0x00000018

If the Flags field does not have the fCryptoAPI bit set, the ProviderType field MUST be
0x00000000.

Reserved1 (4 bytes): A value that is undefined and MUST be ignored.

Reserved2 (4 bytes): A value that MUST be 0x00000000 and MUST be ignored.

CSPName (variable): A null - terminated Unicode string that specifies the CSP name.

2.3.3 EncryptionVerifier

The EncryptionVerifier structure is used by Office Binary Document RC4 CryptoAPI Encryption
(s ection 2.3.5) and ECMA -376 Document Encryption (section 2.3.4). Every usage of this structure
MUST specify the hashing algorithm and enc ryption algorithm used in the EncryptionVerifier
structure.

Verifier can be 16 bytes of data randomly generated each time the structure is created. Verifier is
not stored in this structure directly.

The EncryptionVerifier structure MUST be set by using the following process:

1. Generate random data and write it into the Salt field.

2. Derive the encryption key from the password and salt , as specified in either section 2.3.4.7 or
section 2.3.5.2 , with block number 0.

35 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

3. Generate 16 bytes of additional random data as the Verifier .

4. Encrypt the result of step 3 and write it into the Encrypted Verifier field.

5. For the chosen hashing algorithm, obtain the size of the hash data and write this value into the
VerifierHashSize field.

6. Obtain the hashing algorithm output by using as input the data generated in step 3.

7. Encrypt the hashing algorithm output from step 6 by using the chosen encryption algorithm, and
write the output into the EncryptedVerifierHash field.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SaltSize

Salt (16 bytes)

...

...

EncryptedVerifier (16 bytes)

...

...

VerifierHashSize

EncryptedVerifierHash (variable)

...

SaltSize (4 bytes): An unsigned integer that specifies the size of the Salt field. It MUST be
0x00000010.

Salt (16 bytes): An array of bytes that specifies t he salt value used during password hash
generation. It MUST NOT be the same data used for the verifier stored encrypted in the
EncryptedVerifier field.

EncryptedVerifier (16 bytes): A value that MUST be the randomly generated Verifier value
encrypted using the algorithm chosen by the implementation.

VerifierHashSize (4 bytes): An unsigned integer that specifies the number of bytes needed to
contain the hash of the data used to generate the EncryptedVerifier field.

EncryptedVerifierHash (variable): An array of bytes that contains the encrypted form of the hash
of the randomly generated Verifier value. The length of the array MUST be the size of the
encryption block size multiplied by the number of blocks needed to encrypt the hash of the

Verifier . I f the encryption algorithm is RC4, the length MUST be 20 bytes. If the encryption
algorithm is AES, the length MUST be 32 bytes. After decrypting the EncryptedVerifierHash
field, only the first VerifierHashSize bytes MUST be used.

36 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2.3.4 ECMA -376 Document Encryp tion

When an ECMA -376 document [ECMA -376] is encrypted as s pecified in [ECMA -376] Part 2 Annex C
Table C -5 BIT 0, a structured storage utilizing the data spaces construct as specified in section 2.1

MUST be used. Unless exceptions are noted in the followi ng subsections, streams and storages
contained within the \ 0x06DataSpaces storage MUST be present as specified in section 2.1.1 .

2.3.4.1 \ 0x06DataSpaces \ DataSpaceMap Stream

The data space map MUST contain the following structure:

Á The \ 0x06DataSpaces \ DataSpaceMap stream MUST contain a DataSpaceMap structure
(section 2.1.6) containing exactly one DataSpaceMapEntry structure (section 2.1.6.1).

Á The DataSpaceMapEntry struc ture:

Á MUST have a DataSpaceName equal to "StrongEncryptionDataSpace".

Á MUST have exactly one ReferenceComponents entry with the name "EncryptedPackage" and the
type 0x00000000, which signifies a stream.

2.3.4.2 \ 0x06DataSpaces \ DataSpaceInfo Storage

The DataSpaceInfo storage MUST contain a stream that is defined as follows:

Á The \ 0x06DataSpaces \ DataSp aceInfo storage MUST contain a stream named
"StrongEncryptionDataSpace", which MUST contain a DataSpaceDefinition structure (section

2.1.7).

Á The DataSpaceDefinition structure MUST have exactly one TransformReferences entry, which
MUST be "StrongEncryptionTransform".

2.3.4.3 \ 0x06DataSpaces \ TransformInfo Storage

The \ 0x06DataSpaces \ TransformInfo storage MUST contain one storage named
"StrongEncryptionTransform". The "StrongEncryptionTransform" storage MUST contain a stream
named "0x06Primary". The "0x06Primary " stream MUST contain an IRMDSTransformInfo structure
(section 2.2.6). Within the IRMDSTransformInfo structure, the following values MUST be set:

Á TransformInfoHeader.TransformType MUST be 0x000000 01.

Á TransformInfoHeader.TransformID MUST be "{FF9A3F03 -56EF-4613 -BDD5 -5A41C1D07246}".

Á TransformInfoHeader.TransformName MUST be "Microsoft.Container.EncryptionTransform".

Á TransformInfoHeader.ReaderVersion MUST be "1.0".

Á TransformInfoHeader.UpdaterVersion MUST be "1.0".

Á TransformInfoHeader.WriterVersion MUST be "1.0".

Following the IRMDSTransformInfo structure, an EncryptionTransformInfo structure (section
2.1.9) MUST exist that specifies the encryp tion algorithms to be used. However, if the algorithms
specified in the EncryptionTransformInfo structure differ from the algorithms specified in the

EncryptionInfo stream (as specified in section 2.3.4.5 , section 2.3.4.6 , and section 2.3.4.10), the
EncryptionInfo stream MUST be considered authoritative. If the agile encryption me thod is used, the
EncryptionName field of the EncryptionTransformInfo structure MUST be a null string
(0x00000000).

http://go.microsoft.com/fwlink/?LinkId=200054

37 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2.3.4.4 \ EncryptedPackage Stream

The \ EncryptedPackage stream is an encrypted stream of bytes containing the entire ECMA -376
source file [ECMA -376] in compressed form.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StreamSize

...

EncryptedData (variable)

...

StreamSize (8 bytes): An unsigned integer that specifies the number of bytes used by data
encrypted within the EncryptedData field, not including the size of the StreamSize field. Note
that the actual size of the \ EncryptedPackage stream can be larger than this value, depending

on the block size of the chosen encryption algorithm

EncryptedData (variable): A block of data that is encrypted by using the algorithm specified wit hin
the \ EncryptionInfo stream (section 2.3.4.5).

2.3.4.5 \ EncryptionInfo Stream (Standard Encryption)

The \ EncryptionInfo stream contains detailed information that is used to initialize the cryptography
used to encrypt the \ Enc ryptedPackage stream, as specified in section 2.3.4.4 , when standard
encryption is used.

If an external encryption provider is used, see section 2.3.4.6 .

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionVersionInfo

EncryptionHeader.Flags

EncryptionHeaderSize

EncryptionHeader (variable)

...

EncryptionVerifier (variable)

...

EncryptionVersionInfo (4 bytes): A Version structure (section 2.1.4) where Version.vMajor

MUST be 0x0002, 0x0003 or 0x0004 <9> , and Version.vMinor MUST be 0x0002.

http://go.microsoft.com/fwlink/?LinkId=200054

38 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

EncryptionHeader.Flags (4 bytes): A copy of the Flags stored in the EncryptionHeader field of
this structure.

EncryptionHeaderSize (4 bytes): An unsigned integer that specifies the size, in bytes, of the
EncryptionHeader field of this structure.

EncryptionHeader (variable): An En cryptionHeader structure (section 2.3.2) that specifies
parameters used to encrypt data. The values MUST be set as specified in the following table.

Field Value

Flags The fCryptoAPI and fAES bit s MUST be set. The fDocProps bit MUST be 0.

SizeExtra This value MUST be 0x00000000.

AlgID This value MUST be 0x0000660E (AES -128), 0x0000660F (AES -192), or
0x00006610 (AES -256).

AlgIDHash This value MUST be 0x00008004 (SHA -1).

KeySize This value MUST be 0x00000080 (AES -128), 0x000000C0 (AES -192), or
0x00000100 (AES -256).

ProviderType This value SHOULD <10> be 0x00000018 (AES).

Reserved1 This value is undefined and MUST be ignored.

Reserved2 This value MUST be 0x00000000 and MUST be ignored.

CSPName This value SHOULD <11> be set to either "Microsoft Enhanced RSA and AES
Cryptographic Provider" or "Microsoft Enhanced RSA and AES Cryptographic
Provider (Prototype)" as a null - ter minated Unicode string.

EncryptionVerifier (variable): An EncryptionVerifier structure, as specified in section 2.3.3 , that
is generated as specified in section 2.3.4.8 .

2.3.4.6 \ EncryptionInfo Stream (Extensible Encryption)

ECMA-376 documents [ECMA -376] can optionally use user -provided custom (extensible) encryption
modules. When extensible encryption is use d, the \ EncryptionInfo stream MUST contain the
structure described in the following table.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionVersionInfo

EncryptionHeader.Flags

EncryptionHeaderSize

EncryptionHeader (variable)

...

EncryptionInfo(variable)

http://go.microsoft.com/fwlink/?LinkId=200054

39 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

é

EncryptionVerifier (variable)

...

EncryptionVersionInfo (4 bytes): A Version structure (section 2.1.4) where Version.vMajor
MUST be 0x0003 or 0x0004 and Version.vMinor MUST be 0x0003.

EncryptionHeader.Flags (4 bytes): A copy of the Flags stored in the EncryptionHeader field of
this structure as specified in section 2.3.1 . It MUST have the fEx ternal bit set to 1. All other bits
in this field MUST be set to 0.

EncryptionHeaderSize (4 bytes): An unsigned integer that specifies the size, in bytes, of the

EncryptionHeader field of this structure, including the GUID specifying the extensible encrypt ion
module.

EncryptionHeader (variable): An EncryptionHeader structure (section 2.3.2) used to encrypt the
structure. The values MUST be set as described in the following table.

Field Value

Flags A value that MUST have the fExternal bit set to 1.
All other bits MUST be set to 0.

SizeExtra A value that MUST be 0x00000000.

AlgID A value that MUST be 0x00000000.

AlgIDHash A value that MUST be 0x00000000.

KeySize A value that MUST be 0x00000000.

ProviderType A value that MUST be 0x00000000.

Reserved1 A value that is undefined and MUST be ignored.

Reserved2 A value that MUST be 0x00000000 and MUST be
ignored.

CSPName A unique identifier of an encryption module. <12>

EncryptionInfo (variable): A Unicode string that specifies an EncryptionData element. The first
Unicode code point MUST be 0xFEFF.

The EncryptionData XML element MUST conform to the following XMLSchema namespace as
specified by [W3C -XSD] .

 <?xml version="1.0" encoding="utf - 8"?>

 <xs:schema targetNamespace="urn:schemas - microsoft - com:office:office"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified">

 <xs:element na me="EncryptionData">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="EncryptionProvider">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="EncryptionProviderData">

 <xs:simpleType>

http://go.microsoft.com/fwlink/?LinkId=90563

40 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 <xs:restriction base="xs:base64Binary"/>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 <xs:attribute name="Id" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value=" \ {[0 - 9A- Fa- f]{8} \ - [0 - 9A- Fa- f]{4} \ -

 [0 - 9A- Fa- f]{4} \ - [0 - 9A- Fa- f]{4} \ - [0 - 9A- Fa- f]{12} \ }"/>

 </xs:restriction>

 </xs:simpleType>

 </ xs:attribute>

 <xs:attribute name="Url" type="xs:anyURI" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:schema>

Element Parent Attribute Value

EncryptionData

EncryptionProvider EncryptionData

 Id The GUID of the extensible
encryption module,
expressed as a string.

 Url A URL where the extensible
encryption module can be
obtained.

EncryptionProviderData EncryptionProvider Base64 -encoded data used
by the extensible module.

EncryptionVerifier (variable): An EncryptionVerifier structure, as specified in section 2.3.3 , that
is generated as specified in section 2.3.4.8 .

2.3.4.7 ECMA -376 Document Encryption Key Generation (Standard Encryption)

The encryption key for ECMA -376 document encryption [ECMA -376] MUST be generated by using the
following method, which is derived from PKCS #5: Password -Based Cryptography Version 2.0

[RFC2898] .

Let H() be a hashing algorithm as determined by the EncryptionHeader.AlgIDHash field, H n be the
hash data of the n th iteration, and a plus sign (+) represent concatenation. This hashing algorithm
MUST be SHA -1. The password MUST be provided as an array of Unicode cha racters. Limitations on
the length of the password and the characters used by the password are implementation -dependent.
The initial password hash is generated as follows:

Á H0 = H(salt + password)

The salt used MUST be generated randomly and MUST be 16 byte s in size. The salt MUST be stored in
the EncryptionVerifier.Salt field contained within the \ EncryptionInfo stream as specified in
section 2.3.4.5 . The hash is then iterated by using the followin g approach:

Á Hn = H(iterator + H n-1)

http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=119708

41 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

where iterator is an unsigned 32 -bit value that is initially set to 0x00000000 and then incremented
monotonically on each iteration until 50,000 iterations have been performed. The value of iterator on

the last iteration MUST be 49,999.

After the final hash data has been obtained, the encryption key MUST be generated by using the final

hash data, and the block number MUST be 0x00000000. The encryption algorithm MUST be specified
in the EncryptionHeader.AlgID field. The en cryption algorithm MUST use ECB mode. The method
used to generate the hash data that is the input into the key derivation algorithm is as follows:

Á Hfinal = H(H n + block)

The encryption key derivation method is specified by the following steps:

1. Let cbRequiredKeyLength be equal to the size, in bytes, of the required key length for the
relevant encryption algorithm as specified by the EncryptionHeader structure. Note that

cbRequiredKeyLength MUST be less than or equal to 40.

2. Let cbHash be the number of bytes output by the hashing algorithm H.

3. Form a 64 -byte buffer by repeating the constant 0x36 64 times. XOR H final into the first cbHash
bytes of this buffer, and compute a hash of the resulting 64 -byte buffer by using hashing
algorithm H. This will yield a hash value of length cbHash . Let the resulting value be called X1 .

4. Form another 64 -byte buffer by repeating the constant 0x5C 64 times . XOR H final into the first

cbHash bytes of this buffer, and compute a hash of the resulting 64 -byte buffer by using hash
algorithm H. This yields a hash value of length cbHash . Let the resulting value be called X2 .

5. Concatenate X1 with X2 to form X3 , which will yield a value twice the length of cbHash .

6. Let keyDerived be equal to the first cbRequiredKeyLength bytes of X3 .

2.3.4.8 Password Verifier Generation (Standard Encryption)

The password verifier uses an EncryptionVerifier structure as specified in section 2.3.3 . The

password verifier Salt field MUST be equal to the salt created during password key generation, as
specified in section 2.3.4.7 . A randomly generated verifier is then hashed usi ng the SHA -1 hashing
algorithm specified in the EncryptionHeader structure, and encrypted using the key generated as
specified in section 2.3.4.7, with a block number of 0x00000000.

2.3.4.9 Password Verification (Standard Encryption)

Passwords MUST be verified by using the following steps:

1. Generate an encryption key as specified i n section 2.3.4.7 .

2. Decrypt the EncryptedVerifier field of the EncryptionVerifier structure as specified in section

2.3.3 , and generated as specified in section 2.3.4.8 , to obtain the Verifier value. The resulting
Verifier value MUST be an array of 16 bytes.

3. Decrypt the EncryptedVerifierHash field of the EncryptionVerifier structure to obtain the hash

of the Verifier value. The number of bytes used by the encrypted Verifier hash MUST be 32. The
number of bytes used by the decrypted Verifier hash is given by the VerifierHashSize field,
which MUST be 20.

4. Calculate the SHA -1 h ash value of the Verifier value calculated in step 2.

5. Compare the results of step 3 and step 4. If the two hash values do not match, the password is
incorrect.

42 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2.3.4.10 \ EncryptionInfo Stream (Agile Encryption)

The \ EncryptionInfo stream contains detailed information about the cryptography used to encrypt
the \ EncryptedPackage stream (se ction 2.3.4.4) when agile encryption is used.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionVersionInfo

Reserved

XmlEncryptionDescriptor (variable)

...

EncryptionVersionInfo (4 bytes): A Version structure (section 2.1.4), where Version.vMajor
MUST be 0x0004 and Version.vMinor MUST be 0x0004.

Reserved (4 bytes): A value that MUST be 0x00000040.

Xm lEncryptionDescriptor (variable): An XML element that MUST conform to the following XML
schema namespace, as specified in [W3C -XSD] :

 <?xml version="1.0" encoding="utf - 8"?>

 <xs:schema attribute FormDefault="unqualified" elementFormDefault="qualified"

 targetNamespace="http://schemas.microsoft.com/office/2006/encryption"

 xmlns="http://schemas.microsoft.com/office/2006/encryption"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simple Type name="ST_SaltSize">

 <xs:restriction base="xs:unsignedInt">

 <xs:minInclusive value="1" />

 <xs:maxInclusive value="65536" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="ST_BlockSize">

 <xs:restriction base="xs:unsignedInt">

 <xs:minInclusive value="2" />

 <xs:maxInclusive value="4096" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="ST_KeyBits">

 <xs:restriction base="xs:unsignedInt">

 <xs:minInclusive value="8" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="ST_HashSize">

 <xs:restriction base="xs:unsignedInt">

 <xs:minInclusive value="1" />

 <xs:maxInclusive value="65536" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="ST_SpinCount">

 <xs:restriction base="xs:unsignedInt">

 <xs:minInclusive value="0" />

 <xs:maxInclusive value="10000000" />

 </xs:restriction>

http://go.microsoft.com/fwlink/?LinkId=90563

43 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 </xs:simpleType>

 <xs:simpleType name="ST_CipherAlgorithm">

 <xs:restriction base="xs:string">

 <xs:minLength value="1" />

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="ST_CipherChaining">

 <xs:restriction base="xs:string">

 <xs:minLength value="1" />

 </xs:restriction>

 </xs:simpl eType>

 <xs:simpleType name="ST_HashAlgorithm">

 <xs:restriction base="xs:string">

 <xs:minLength value="1" />

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="CT_KeyData">

 <xs:attribute name="saltSize" type="ST_SaltSize" use ="required" />

 <xs:attribute name="blockSize" type="ST_BlockSize" use="required" />

 <xs:attribute name="keyBits" type="ST_KeyBits" use="required" />

 <xs:attribute name="hashSize" type="ST_HashSize" use="required" />

 <xs:attribute name="ciph erAlgorithm" type="ST_CipherAlgorithm" use="required" />

 <xs:attribute name="cipherChaining" type="ST_CipherChaining" use="required" />

 <xs:attribute name="hashAlgorithm" type="ST_HashAlgorithm" use="required" />

 <xs:attribute name="saltValue" type="xs:base64Binary" use="required" />

 </xs:complexType>

 <xs:complexType name="CT_DataIntegrity">

 <xs:attribute name="encryptedHmacKey" type="xs:base64Binary" use="required" />

 <xs:attribute name="encryptedHmacV alue" type="xs:base64Binary" use="required" />

 </xs:complexType>

 <xs:complexType name="CT_KeyEncryptor">

 <xs:sequence>

 <xs:any processContents="lax" />

 </xs:sequence>

 <xs:attribute name="uri" type="xs:token" />

 </xs:complexType>

 <xs:complexType name="CT_KeyEncryptors">

 <xs:sequence>

 <xs:element name="keyEncryptor" type="CT_KeyEncryptor" minOccurs="1"

maxOccurs="unbounded" />

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="CT_Encryption">

 <xs:sequence >

 <xs:element name="keyData" type="CT_KeyData" minOccurs="1" maxOccurs="1" />

 <xs:element name="dataIntegrity" type="CT_DataIntegrity" minOccurs="0" maxOccurs="1" />

 <xs:element name="keyEncryptors" type="CT_KeyEncryptors" minOccurs="1" m axOccurs="1" />

 </xs:sequence>

 </xs:complexType>

 <xs:element name="encryption" type="CT_Encryption" />

 </xs:schema>

SaltSize: An unsigned integer that specifies the number of bytes used by a salt. It MUST be at least 1
and no greater than 65,536.

BlockSize: An unsigned integer that specifies the number of bytes used to encrypt one block of data.
It MUST be at least 2, no greater than 4096, and a multiple of 2.

44 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

KeyBits: An unsigned integer that specifies the number of bits used by an encryption algo rithm. It
MUST be at least 8 and a multiple of 8.

HashSize: An unsigned integer that specifies the number of bytes used by a hash value. It MUST be
at least 1, no greater than 65,536, and the same number of bytes as the hash algorithm emits.

SpinCount: An unsigned integer that specifies the number of times to iterate on a hash of a
password. It MUST NOT be greater than 10,000,000.

CipherAlgorithm: A string that specifies the cipher algorithm. The values in the following table are
defined.

Value Cipher alg orithm

AES MUST conform to the AES algorithm.

RC2 MUST conform to the algorithm as specified in
[RFC2268] .<13>

RC4 MUST NOT be used.

DES MUST conform to the DES algorithm. <14>

DESX MUST conform to the algorithm as specified in
[D RAFT-DESX] .<15>

3DES MUST conform to the algorithm as specified in
[RFC1851] .<16>

3DES_112 MUST conform to the algorithm as specified in
[RFC1851]. <17>

Values that are not defined MAY <18> be used, and a compliant implementation is not required to
support all defined values. The string MUST be at least 1 character.

CipherChaining: A string that specifies the chaining mode used by CipherAlgorithm . For more

details about chaining modes, see [BCMO800 -38A] . It MUST be one of the values described in the
following table.

Value Chaining mode

ChainingModeCBC Cipher block chaining (CBC)

ChainingModeCFB Cipher feedback chaining (CFB), with an 8 -bit
window

HashAlgorithm: A string specifying a hashing algorithm. The values described in the following table
are defined.

Value Hash algorithm

SHA-1 MUST conform to the algorithm as specified in
[RFC4 634] .

SHA256 MUST conform to the algorithm as specified in
[RFC4634].

SHA384 MUST conform to the algorithm as specified in
[RFC4634].

SHA512 MUST conform to the algorithm as specified in

http://go.microsoft.com/fwlink/?LinkId=90330
http://go.microsoft.com/fwlink/?LinkId=128905
http://go.microsoft.com/fwlink/?LinkId=128901
http://go.microsoft.com/fwlink/?LinkId=113491
http://go.microsoft.com/fwlink/?LinkId=90486

45 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Value Hash algorithm

[RFC4634].

MD5 MUST conform to MD5 .

MD4 MUST conform to the algorithm as specified in
[RFC1320] .

MD2 MUST conform to the algorithm as specified in
[RFC1319] .

RIPEMD-128 MUST conform to the hash functions specified in
[ISO/IEC 10118] .

RIPEMD-160 MUST conform to t he hash functions specified in
[ISO/IEC 10118].

WHIRLPOOL MUST conform to the hash functions specified in
[ISO/IEC 10118].

Values that are not defined MAY <19> be used, and a compliant implementation is not required to
support all defined values. The string MUST be at least 1 character. For more information, see section
4.

KeyData: A complex type that s pecifies the encryption used within this element. The saltValue
attribute is a base64 -encoded binary value that is randomly generated. The number of bytes required
to decode the saltValue attribute MUST be equal to the value of the saltSize attribute.

Dat aIntegrity: A complex type that specifies data used to verify whether the encrypted data passes
an integrity check. It MUST be generated using the method specified in section 2.3.4.14 . This type i s
composed of the following simple types:

Á encryptedHmacKey: A base64 -encoded value that specifies an encrypted key used in calculating

the encryptedHmacValue .

Á encryptedHmacValue: A base64 -encoded value that specifies an HMAC derived from
encryptedHmacKey and the encrypted data.

KeyEncryptor: A complex type that specifies the parameters used to encrypt an intermediate key,
which is used to perform the final encryption of the document. To ensure extensibility, arbitrary
elements can be defined to encrypt the intermediate key. The intermediate key MUST be the same for

all KeyEncryptor elements. PasswordKeyEncryptor and CertificateKeyEncryptor are defined
later in this section.

KeyEncryptors: A seq uence of KeyEncryptor elements. Exactly one KeyEncryptors element MUST
be present, and the KeyEncryptors element MUST contain at least one KeyEncryptor .

Encryption: A complex type composed of the following elements that specify the encryption
properties:

Á keyData: One KeyData element MUST be present.

Á dataIntegrity: One DataIntegrity element MUST <20> be present.

Á keyEncryptors: One KeyEncryptors sequence MUST be present.

The KeyEncryptor element, which MUST be used when e ncrypting password -protected agile
encryption documents, is either a PasswordKeyEncryptor or a CertificateKeyEncryptor . Exactly
one PasswordKeyEncryptor MUST be present. Zero or more CertificateKeyEncryptor elements
are contained within the KeyEncryptors element. The PasswordKeyEncryptor is specified by the
following schema:

http://go.microsoft.com/fwlink/?LinkId=90274
http://go.microsoft.com/fwlink/?LinkId=90273
http://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409

46 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 <?xml version="1.0" encoding="utf - 8"?>

 <xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"

 targetNamespace="http://schemas.microsoft.com/office/2006/keyEncry ptor/password"

 xmlns="http://schemas.microsoft.com/office/2006/keyEncryptor/password"

 xmlns:e="http://schemas.microsoft.com/office/2006/encryption"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import namespace="http://schemas.microsoft.com/office/2006/encryption"

schemaLocation="encryptionInfo.xsd" />

 <xs:simpleType name="ST_PasswordKeyEncryptorUri">

 <xs:restriction base="xs:token">

 <xs:enumeration value="http://schemas.microsoft .com/office/2006/keyEncryptor/password"

/>

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="CT_PasswordKeyEncryptor">

 <xs:attribute name="saltSize" type="e:ST_SaltSize" use="required" />

 <xs:attribute name="blockSize" type="e:ST_Bl ockSize" use="required" />

 <xs:attribute name="keyBits" type="e:ST_KeyBits" use="required" />

 <xs:attribute name="hashSize" type="e:ST_HashSize" use="required" />

 <xs:attribute name="cipherAlgorithm" type="e:ST_CipherAlgorithm" use="required" / >

 <xs:attribute name="cipherChaining" type="e:ST_CipherChaining" use="required" />

 <xs:attribute name="hashAlgorithm" type="e:ST_HashAlgorithm" use="required" />

 <xs:attribute name="saltValue" type="xs:base64Binary" use="required" />

 <xs:at tribute name="spinCount" type="e:ST_SpinCount" use="required" />

 <xs:attribute name="encryptedVerifierHashInput" type="xs:base64Binary" use="required" />

 <xs:attribute name="encryptedVerifierHashValue" type="xs:base64Binary" use="required" />

 <xs:attribute name="encryptedKeyValue" type="xs:base64Binary" use="required" />

 </xs:complexType>

 <xs:element name="encryptedKey" type="CT_PasswordKeyEncryptor" />

 </xs:schema>

saltSize: A SaltSize that specifies the size of the salt for a PasswordKeyEncryptor .

blockSize: A BlockSize that specifies the block size for a PasswordKeyEncryptor .

keyBits: A KeyBits that specifies the number of bits for a PasswordKeyEncryptor .

hashSize: A HashSize that specifies the size of the binary form of the hash for a
PasswordKeyEncryptor .

cipherAlgorithm: A CipherAlgorithm that specifies the cipher algorithm for a

PasswordKeyEncryptor . The cipher algorithm specified MUST be the same as the cipher algorithm
specified for the Encryption.keyData element.

cipherChaining: A CipherChaining that specifies the cipher chaining mode for a
PasswordKeyEncryptor .

hashAlgorithm: A HashAlgorithm that specifies the hashing algorithm for a
PasswordKeyEncryptor . The hashing algorithm specified MUST be the same as the has hing

algorithm specified for the Encryption.keyData element.

saltValue: A base64 -encoded binary byte array that specifies the salt value for a
PasswordKeyEncryptor . The number of bytes required by the decoded form of this element MUST
be saltSize .

spinCoun t: A SpinCount that specifies the spin count for a PasswordKeyEncryptor .

encryptedVerifierHashInput: A base64 -encoded value that specifies the encrypted verifier hash
input for a PasswordKeyEncryptor used in password verification.

47 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

encryptedVerifierHashValu e: A base64 -encoded value that specifies the encrypted verifier hash
value for a PasswordKeyEncryptor used in password verification.

encryptedKeyValue: A base64 -encoded value that specifies the encrypted form of the intermediate
key.

The CertificateKeyEncr yptor is specified by the following schema:

 <?xml version="1.0" encoding="utf - 8"?>

 <xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"

 targetNamespace="http://schemas.microsoft.com/office/2006/keyEncryptor/certificate"

 xmlns="http: //schemas.microsoft.com/office/2006/keyEncryptor/certificate"

 xmlns:e="http://schemas.microsoft.com/office/2006/encryption"

 xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import namespace="http://schemas.microsoft.com/office/2006/encryption"

schemaLocation="encryptionInfo.xsd" />

 <xs:simpleType name="ST_PasswordKeyEncryptorUri">

 <xs:restriction base="xs:token">

 <xs:enumeration

value="http://schemas.microsoft. com/office/2006/keyEncryptor/certificate" />

 </xs:restriction>

 </xs:simpleType>

 <xs:complexType name="CT_CertificateKeyEncryptor">

 <xs:attribute name="encryptedKeyValue" type="xs:base64Binary" use="required" />

 <xs:attribute name="X509Certi ficate" type="xs:base64Binary" use="required" />

 <xs:attribute name="certVerifier" type="xs:base64Binary" use="required" />

 </xs:complexType>

 <xs:element name="encryptedKey" type="CT_CertificateKeyEncryptor" />

 </xs:schema>

encryptedKeyValue: A bas e64 -encoded value that specifies the encrypted form of the intermediate
key, which is encrypted with the public key contained within the X509Certificate attribute.

 X509Certificate: A base64 -encoded value that specifies a DER -encoded X.509 certificate used to
encrypt the intermediate key. The certificate MUST contain only the public portion of the public -private
key pair.

certVerifier: A base64 -encoded value that specifies the HMAC of the binary data obtained by base64 -

decoding the X509Certificate attribute. The hashing algorithm used to derive the HMAC MUST be the
hashing algorithm specified for the Encr yption.keyData element. The secret key used to derive the
HMAC MUST be the intermediate key.

If the intermediate key is reset, any CertificateKeyEncryptor elements are also reset to contain the
new intermediate key, except that the certVerifier attribute M UST match the value calculated using
the current intermediate key, to verify that the CertificateKeyEncryptor element actually encrypted
the current intermediate key. If a CertificateKeyEncryptor element does not have a correct

certVerifier attribute, it M UST be discarded.

2.3.4.11 Encryption Key Generation (Agile Encryption)

The encryption key for ECMA -376 document encryption [ECMA -376] using agile encryption MUST be

generated by using the following method, which is derived from PKCS #5: Password -Based
Cryptography Version 2.0 [RFC2898] .

Let H() be a hashing algorithm as determined by the PasswordKeyEncryptor.hashAlgorithm
element, H n be the hash data of the n th iteration, and a plus sign (+) represen t concatenation. The
password MUST be provided as an array of Unicode characters. Limitations on the length of the
password and the characters used by the password are implementation -dependent. The initial
password hash is generated as follows:

Á H0 = H(salt + password)

http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=119708

48 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

The salt used MUST be generated randomly. The salt MUST be stored in the
PasswordKeyEncryptor.saltValue element contained within the \ EncryptionInfo stream as

specified in section 2.3.4.10 . The hash is then iterated by using the following approach:

Á Hn = H(iterator + H n-1)

where iterator is an unsigned 32 -bit value that is initially set to 0x00000000 and then incremented
monotonically on each iteration until PasswordKey.spinCou nt iterations have been performed. The
value of iterator on the last iteration MUST be one less than PasswordKey.spinCount .

The final hash data that is used for an encryption key is then generated by using the following
method:

Á Hfinal = H(H n + blockKey)

where blockKey represents an array of bytes used to prevent two different blocks from encrypting to

the same cipher text.

If the size of the resulting H final is smaller than that of PasswordKeyEncryptor.keyBits , the key

MUST be padded by appending bytes wit h a value of 0x36. If the hash value is larger in size than
PasswordKeyEncryptor.keyBits , the key is obtained by truncating the hash value.

2.3.4.12 Initialization Vector Generation (Agile Encryption)

Initialization vectors are used in all cases for agile encryption. An initialization vector MUST be
generate d by using the following method, where H() is a hash function that MUST be the same as
specified in section 2.3.4.11 and a plus sign (+) represents concatenation:

1. If a blockKey is provided, let IV be a hash of the KeySalt and the following value:

1. blockKey:IV = H(KeySalt + blockKey)

2. If a blockKey is not provided, let IV be equal to the following value:

1. KeySalt:IV = KeySalt.

3. If the number of bytes in the value of IV is less than the value of the bloc kSize attribute
corresponding to the cipherAlgorithm attribute, pad the array of bytes by appending 0x36 until
the array is blockSize bytes. If the array of bytes is larger than blockSize bytes, truncate the
array to blockSize bytes.

2.3.4.13 PasswordKeyEncryptor Generation (Agile Encryption)

For agile encryption, the password key encryptor XML element specified in section 2.3.4.10 MUST be
created as follows:

saltSize: Set this attribute to the number of bytes used by the binary fo rm of the saltValue attribute.

It MUST conform to a SaltSize type.

blockSize: Set this attribute to the number of bytes needed to contain an encrypted block of data, as

defined by the cipherAlgorithm used. It MUST conform to a BlockSize type.

keyBits: Set this attribute to the number of bits needed to contain an encryption key, as defined by
the cipherAlgorithm used. It MUST conform to a KeyBits type.

hashSize: Set this attribute to the number of bytes needed to contain the output of the hashing
algorithm defined by the hashAlgorithm element. It MUST conform to a HashSize type.

49 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

cipherAlgorithm: Set this attribute to a string containing the cipher algorithm used to encrypt the
encryptedVerifierHashInput , encryptedVerifierHashValue , and encryptedKeyValue . It MUST

conform to a CipherAlgorithm type.

cipherChaining: Set this attribute to the cipher chaining mode used to encrypt

encryptedVerifierHashInput , encryptedVerifierHashValue , and encryptedKeyValue . It MUST
conform to a CipherChaining type.

hashAlgori thm: Set this attribute to the hashing algorithm used to derive the encryption key from
the password and that is also used to obtain the encryptedVerifierHashValue . It MUST conform to a
HashAlgorithm type.

saltValue: Set this attribute to a base64 -encoded , randomly generated array of bytes. It MUST
conform to a SaltValue type. The number of bytes required by the decoded form of this element

MUST be saltSize .

spinCount: Set this attribute to the number of times to iterate the password hash when creating th e
key used to encrypt the encryptedVerifierHashInput , encryptedVerifierHashValue , and

encryptedKeyValue . It MUST conform to a SpinCount type.

encryptedVerifierHashInput: This attribute MUST be generated by using the following steps:

1. Generate a random arra y of bytes with the number of bytes used specified by the saltSize

attribute.

2. Generate an encryption key as specified in section 2.3.4.11 by using the user -supplied password,
the binary byte array used to create the saltValue attribute, and a blockKey byte array
consisting of the following bytes: 0xfe, 0xa7, 0xd2, 0x76, 0x3b, 0x4b, 0x9e, and 0x79.

3. Encrypt the random array of bytes generated in step 1 by using the binary form of the saltValue
attribute as an initialization vector as specified in section 2.3.4.12 . If the array of bytes is not an
integral multiple of blockSize bytes, p ad the array with 0x00 to the next integral multiple of

blockSize bytes.

4. Use base64 to encode the result of step 3.

encryptedVerifierHashValue: This attribute MUST be generated by using the following steps:

1. Obtain the hash value of the random array of byte s generated in step 1 of the steps for
encryptedVerifierHashInput .

2. Generate an encryption key as specified in section 2.3.4.11 by using the user -supplied password,
the binary byte array used to create the saltValue attribute, and a blockKey byte array

cons isting of the following bytes: 0xd7, 0xaa, 0x0f, 0x6d, 0x30, 0x61, 0x34, and 0x4e.

3. Encrypt the hash value obtained in step 1 by using the binary form of the saltValue attribute as
an initialization vector as specified in section 2.3.4.12. If hashSize is no t an integral multiple of
blockSize bytes, pad the hash value with 0x00 to an integral multiple of blockSize bytes.

4. Use base64 to encode the result of step 3.

encryptedKeyValue: This attribute MUST be generated by using the following steps:

1. Generate a rand om array of bytes that is the same size as specified by the
Encryptor.KeyData.keyBits attribute of the parent element.

2. Generate an encryption key as specified in section 2.3.4.11, using the user -supplied password, the
binary byte array used to create the saltValue attribute, and a blockKey byte array consisting of
the following bytes: 0x14, 0x6e, 0x0b, 0xe7, 0xab, 0xac, 0xd0, and 0xd6.

50 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

3. Encrypt the random array of bytes generated in step 1 by using the binary form of the saltValue
attribute as an initializat ion vector as specified in section 2.3.4.12. If the array of bytes is not an

integral multiple of blockSize bytes, pad the array with 0x00 to an integral multiple of blockSize
bytes.

4. Use base64 to encode the result of step 3.

2.3.4.14 DataIntegrity Generation (Agil e Encryption)

The DataIntegrity element contained within an Encrypti on element MUST be generated by using

the following steps:

1. Obtain the intermediate key by decrypting the encryptedKeyValue from a KeyEncryptor
contained within the KeyEncryptors sequence. Use this key for encryption operations in the
remaining steps of this section.

2. Generate a random array of bytes, known as Salt , of the same length as the value of the
KeyData.saltSize attribute.

3. Encrypt the random array of bytes generated in ste p 2 by using the binary form of the

KeyData.saltValue attribute and a blockKey byte array consisting of the following bytes: 0x5f,
0xb2, 0xad, 0x01, 0x0c, 0xb9, 0xe1, and 0xf6 used to form an initialization vector as specified in
section 2.3.4.12 . If the array of bytes is not an integral multiple of blockSize bytes, pad the array
with 0x00 to the next integral multiple of blockSize bytes.

4. Assign the encryptedHmacKey attribute to the base64 -encoded form of the result of step 3.

5. Generate an HMAC, as specified in [RFC2104] , of the encrypted form of the data (message), which
the DataIntegrity element will verify by using the Salt generated in step 2 as the key. Note that

the entire EncryptedPackage stream, including the StreamSize field, MUST be used as the
message.

6. Encrypt the HMAC as in step 3 by using a blockKey byte array consisting of the following bytes:
0xa0, 0x67, 0x7f, 0x 02, 0xb2, 0x2c, 0x84, and 0x33.

7. Assign the encryptedHmacValue attribute to the base64 -encoded form of the result of step 6.

2.3.4.15 Data Encryption (Agile Encryption)

The EncryptedPackage stream MUST be encrypted in 4096 -byte segments to facilitate nearly
random access while allowing CBC modes to be used in the encryption process.

The initialization vector for the encryption process MUST be obtained by using the zero -based segment
number as a blockKey and the binary form of the KeyData.saltValue as specified in section

2.3.4.12 . The block number MUS T be represented as a 32 -bit unsigned integer.

Data blocks MUST then be encrypted by using the initialization vector and the intermediate key
obtained by decrypting the encryptedKeyValue from a KeyEncryptor contained within the
KeyEncryptors sequence as s pecified in section 2.3.4.10 . The final data block MUST be padded to the

next integral multiple of the KeyData.blockSize value. Any padding bytes can be used. Note that the
StreamSize field of the EncryptedPackage stream specifies the number of bytes of unencrypted
data as specified in section 2.3.4.4 .

2.3.5 Office Binary Document RC4 CryptoAPI Encryption

The storages and streams encrypted by Office binary document RC4 C ryptoAPI encryption are
specified in the documentation for the relevant application; for more information see [MS -DOC] , [MS -

http://go.microsoft.com/fwlink/?LinkId=90314
%5bMS-DOC%5d.pdf
%5bMS-XLS%5d.pdf

51 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

XLS] , and [MS -PPT]. The following su bsections specify the structures and key generation methods
used by the application.

2.3.5.1 RC4 CryptoAPI Encryption Header

The encryption header structure used for RC4 CryptoAPI encryption is specified as shown in the
following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionVersionInfo

EncryptionHeader.Flags

EncryptionHeaderSize

EncryptionHeader (variable)

...

EncryptionVerifier (variable)

...

EncryptionVersionInfo (4 bytes): A Version structure (section 2.1.4) that specifies the encryption

versi on used to create the document and the encryption version required to open the document.
Version.vMajor MUST be 0x0002, 0x0003, or 0x0004 <21> and Version.vMinor MUST be
0x0002.

EncryptionHeader.Flags (4 bytes): A copy of the Flags stored in the EncryptionHeader structure
(section 2.3.2) that is stored in this stream.

EncryptionHeaderSize (4 bytes): An unsigned integer that specifies the size, in bytes, of the
Enc ryptionHeader structure.

EncryptionHeader (variable): An EncryptionHeader structure (section 2.3.2) used to encrypt the
structure. The values MUST be set as described in the following table.

Field Value

Flags The fCryptoAPI bit MUST be set. The fDocProps bit MUST be set
if the document properties are not encrypted.

SizeExtra MUST be 0x00000000.

AlgID MUST be 0x00006801 (RC4 encryption).

AlgIDHash MUST be 0x00008004 (SHA -1).

KeySize MUST be greater than or equal to 0x00000028 bits and less than
or equal to 0x00000080 bits, in increments of 8 bits. If set to
0x00000000, it MUST be interpreted as 0x00000028 bits. It MUST
be compatible with the chosen cryptographic service provider
(CSP).

%5bMS-XLS%5d.pdf
%5bMS-PPT%5d.pdf

52 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Field Value

ProviderType MUST be 0x00000001.

Reserved1 Undefined and MUST be ignored.

Reserved2 MUST be 0x00000000 and MUST be ignored.

CSPName MUST be set to a recognized CSP name that supports RC4 and
SHA-1 algorithms with a key length compatible with the KeySize
field value. <22>

Encrypti onVerifier (variable): An EncryptionVerifier structure as specified in section 2.3.3 that is
generated as specified in section 2.3.5.5 .

2.3.5.2 RC4 CryptoAPI Encryption Key Generation

The encryption key for RC4 CryptoAPI bin ary document encryption MUST be generated by using the

following approach.

Let H() be a hashing algorithm as determined by the EncryptionHeader.AlgIDHash field, and a plus
sign (+) represents concatenation. The password MUST be provided as an array of Unic ode
characters.

Limitations on the length of the password and the characters used by the password are
implementation -dependent. For details about behavior variations, see [MS -DOC] , [MS -XLS] , and [MS -
PPT]. Unless otherwise specified, the maximum password length MUST be 255 Unicode characters.

The password hash is generated as follows:

Á H0 = H(salt + password)

The salt used MUST be generated randomly and MUST be 1 6 bytes in size. The salt MUST be stored

in the EncryptionVerifier.Salt field as specified in section 2.3.4.5 . Note that the hash MUST NOT be

iterated. See section 4 for additional notes.

After the hash has been obtained, the encryption key MUST be generated by using the hash data and
a block number that is provided by the application. The encryption algorithm MUST be specified in the
EncryptionHeader.AlgID field.

The method used to generate the hash data that is the input into the key derivation algorithm is as
follows:

Á Hfinal = H(H 0 + block)

The block number MUST be a 32 -bit unsigned value provided by the ap plication.

Let keyLength be the key length, in bits, as specified by the RC4 CryptoAPI Encryption Header
KeySize field.

The first keyLength bits of H final MUST be considered the derived encryption key, unless keyLength

is exactly 40 bits long. An SHA -1 hash is 160 bits long, and the maximum RC4 key length is 128 bits;
therefore, keyLength MUST be less than or equal to 128 bits. If keyLength is exactly 40 bits, the

encryption key MUST be composed of the first 40 bits of Hfinal and 88 bits set to zero, creating a 128 -
bit key.

%5bMS-DOC%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-PPT%5d.pdf
%5bMS-PPT%5d.pdf

53 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2.3.5.3 RC4 CryptoAPI EncryptedStreamDescriptor Structure

The RC4 CryptoAPI EncryptedStreamDescriptor structure specifies information about encrypted
streams and storages contained within an RC4 CryptoAPI Encrypted Summary stream as specified in

section 2.3.5.4 . It is specified as shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StreamOffset

StreamSize

Block NameSize A B Unused

Reserved2

StreamName (variable)

...

StreamOffset (4 bytes): An unsigned integer that specifies the offset, in bytes, within the summary
stream where the encrypted stream is written.

StreamSize (4 bytes): An unsigned integer that specifies the size, in bytes, of th e encrypted stream.

Block (2 bytes): An unsigned integer that specifies the block number used to derive the encryption

key for this encrypted stream.

NameSize (1 byte): An unsigned integer that specifies the number of characters used by the
StreamName fiel d, not including the terminating NULL character.

A ï fStream (1 bit): A value that MUST be 1 if the encrypted data is a stream. It MUST be 0 if the
encrypted data is a storage.

B ï Reserved1 (1 bit): A value that MUST be 0 and MUST be ignored.

Unused (6 bi ts): A value that MUST be ignored.

Reserved2 (4 bytes): A value that MUST be ignored.

StreamName (variable): A null - terminated Unicode string specifying the name of the stream (or
storage) stored within the encrypted summary stream.

2.3.5.4 RC4 CryptoAPI Encrypted Summary Stream

When RC4 CryptoAPI encryption is used, an en crypted summary stream MAY <23> be created. The

name of the stream MUST be specified by the application. If the encrypted summary stream is
present, the \ 0x05DocumentSummaryInformation stream MUST be present, MUST conform to
the details as specified in [MS -OSHARED] section 2.3.3.2, and MUST contain no properties. The
\ 0x05SummaryInformation stream MUST NOT be present.

For details about the contents of the \ 0 x05SummaryInformation and

\ 0x05DocumentSummaryInformation streams, see [MS -OSHARED] section 2.3.3.2.1 and [MS -
OSHARED] section 2.3.3.2.2.

%5bMS-OSHARED%5d.pdf

54 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

For brevity, this section refers to the RC4 CryptoAPI Encrypted Summary stream as the encrypted
summary stream (1) .

The stream MUST have the format that is shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

StreamDescriptorArrayOffset

StreamDescriptorArraySize

EncryptedStreamData (variable)

...

EncryptedStreamDescriptorCount

EncryptedStreamDescriptorArray (variable)

...

StreamDescriptorArrayOffset (4 bytes): An unsigned integer that specifies the offset within the
encrypted summary stream where the EncryptedStreamDescriptorCount structure is f ound.

StreamDescriptorArraySize (4 bytes): An unsigned integer that specifies the number of bytes
used by the EncryptedStreamDescriptorArray structure.

EncryptedStreamData (variable): One or more encrypted streams stored within the encrypted
summary stream .

EncryptedStreamDescriptorCount (4 bytes): An encrypted unsigned integer specifying the count

of EncryptedStreamDescriptor structures (section 2.3.5.3).

EncryptedStreamDescriptorArray (variable): One or more EncryptedStreamDescriptor
structures that specify the offsets and names of the encrypted streams and storages contained
within the encrypted summary stream.

The encrypted summary stream MUST be written as specified in the following steps:

1. Seek forward from the start of the encrypted summary stream by 8 bytes to provide space for the

StreamDescriptorArrayOffset and StreamDescriptorArraySize fields, which will be written in
step 8. Let BlockNumber initially be 0x00000000.

2. If additional streams or storages are provided by the application, for each stream or storage the
following steps MUST be performed:

1. If the data is contained within a stream, retrieve the contents of the stream. Initialize
the encryption key as specified in section 2.3.5.2 , using a block number of 0x00000000,
and encrypt the stream data. Write the encrypted bytes into the encrypted summary

stream.

2. If the data is contained within a storage, convert the storage into a file as specified in
[MS -CFB] . Initialize the encryption key as specified in section 2.3.5.2, using a block
number of BlockNumber , and encrypt the storage data as a stream of bytes. Write the
encrypted bytes into the encrypted su mmary stream.

%5bMS-CFB%5d.pdf

55 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

3. Set the fields within the associated EncryptedStreamDescriptor for the stream or
storage. Do not write it to the encrypted summary stream yet.

4. Increment BlockNumber .

3. Generate or retrieve the entire contents of the \ 0x05SummaryInformation stream. Initialize

the encryption key as specified in section 2.3.5.2, using a block number of BlockNumber , and
encrypt the \ 0x05SummaryInformationStream data. Write the encrypted bytes into the
encrypted summary stream. Increment BlockNumber .

4. Set the fiel ds within the associated EncryptedStreamDescriptor for the
\ 0x05SummaryInformation stream. Do not write it to the encrypted summary stream yet.

5. Generate or retrieve data contained within the \ 0x05DocumentSummaryInformation stream .
Initialize the encryption key as specified in section 2.3.5.2, using a block number of

BlockNumber , and encrypt the \ 0x05DocumentSummaryInformationStream data. Write the
encrypted bytes into the encrypted summary stream immediately following the data wri tten in
step 2.

6. Set the fields within the associated EncryptedStreamDescriptor for the
\ 0x05DocumentSummaryInformation stream. Do not write it to the encrypted summary
stream yet.

7. Write the EncryptedStreamDescriptorCount and EncryptedStreamDescriptorArray by
initializing the encryption key as specified in section 2.3.5.2, using a block number of
0x00000000. Concatenate and encrypt the EncryptedStreamDescriptorCount and the
EncryptedStreamDescriptor . Write the encrypted bytes into the encrypted summary strea m.

8. Initialize the StreamDescriptorArrayOffset and StreamDescriptorArraySize fields to specify
the encrypted location of the EncryptedStreamDescriptorCount and size of the
EncryptedStreamDescriptorCount and EncryptedStreamDescriptorArray within the

encrypt ed summary stream. Initialize the encryption key as specified in section 2.3.5.2, using a
block number of 0x00000000.

2.3.5.5 Password Verifier Generation

The password verifier uses an EncryptionVerifier structure, as specified in section 2.3.3 . The
password verifier Salt field MUST be populated with the salt created during password key generation,
as specified in section 2.3.5.2 . An additional 16 -byte verifier is then hashed using the SHA -1 hashing
algorithm specified in the encryption header structure, and encrypted using the key generated in
section 2.3.5.2, with a block number of 0x00000000.

2.3.5.6 Password Verification

The password verification process is specified by the following steps:

1. Generate an encryption key as specified in section 2.3.3 , using a block number of 0x00000000.

2. Decrypt the EncryptedVerifier field of the EncryptionVer ifier structure to obtain the Verifier

value. The resulting Verifier value MUST be an array of 16 bytes.

3. Decrypt the EncryptedVerifierHash field of the EncryptionVerifier structure to obtain the hash

of the Verifier value. The number of bytes used by the encrypted Verifier hash MUST be 20.

4. Calculate the SHA -1 hash value of the Verifier value calculated in step 2.

5. Compare the results of step 3 and step 4. If the two hash values do not match, the password is
incorrect.

56 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

The RC4 decryption stream MUST NOT be reset between the two decryption operations specified in
steps 2 and 3.

2.3.6 Office Binary Document RC4 Encryption

Office binary document RC4 encryption does not alter the storages and streams used. If a stream is
encrypted, it is encrypted in place. The following subsections specify the structures and key generation
methods used by the applic ation.

2.3.6.1 RC4 Encryption Header

The encryption header used for RC4 encryption is specified as shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionVersionInfo

Salt (16 bytes)

...

...

EncryptedVerifier (16 bytes)

...

...

EncryptedVerifierHash (16 bytes)

...

...

EncryptionVersionInfo (4 bytes): A Version structure (section 2.1.4), where Version.vMajor
MUST be 0x0001 and Version.vMinor MUST be 0x0001.

Salt (16 bytes): A randomly generated array of bytes that specifies the salt value used during
password hash generation. It MUST NOT be the same data used for the verifier stored encrypted
in the EncryptedVerifier field.

EncryptedVerifier (16 bytes): An additional 16 -byte verifier encrypted using a 40 -bit RC4 cipher
initialized as specified in section 2.3.6.2 , with a block number of 0x00000000.

EncryptedVerifierHash (16 bytes): A 40 -bit RC4 encrypted MD5 hash of the verifier used to
generate the EncryptedVerifier field.

57 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2.3.6.2 Encryption Key Derivati on

The encryption key for Office binary document RC4 encryption is generated by using the following
method: Let H() be the MD5 hashing algorithm, H n be the hash data of the n th iteration, and a plus

sign (+) represent concatenation. The password MUST be provided as an array of Unicode characters.

Limitations on the length of the password and the characters used by the passwo rd are
implementation -dependent. For details about behavior variations, see [MS -DOC] and [MS -XLS] .
Unless otherwise specified, the maximum password length MUST be 255 Unicode characters.

The i nitial password hash is generated as follows.

Á H0 = H(password)

The salt used MUST be generated randomly and MUST be 16 bytes in size. The salt MUST be stored in

the Salt field of the RC4 Encryption Header structure (section 2.3.6.1). The hash is then computed
by using the following approach:

1. Let TruncatedHash be the first 5 bytes of H 0.

2. Let IntermediateBuffer be a 336 -byte buffer.

3. Form a 21 -byte buffer by concatenating TruncatedHash plus the salt. Initialize
IntermediateBuffer by copying the 21 -byte buffer into IntermediateBuffer a total of 16 times.

4. Use the following: H 1 = H(IntermediateBuffer).

After the final hash has been obtained, the encryption key MUST be generated by using th e first 5
bytes of the final hash data and a block number that is provided by the application. The encryption
algorithm MUST be RC4. The method used to generate the hash data that is the input into the key
derivation algorithm is the following:

Á Let TruncatedHash be the first 5 bytes of H 1.

Á Use the following: H final equals H(TruncatedHash + block).

The block number MUST be a 32 -bit unsigned value provided by the application.

The first 128 bits of H final MUST then be used as the derived encryption key.

2.3.6.3 Password Verifier Generation

The password verifier uses a BinaryRC4EncryptionHeader structure, as specified in section 2.3.6.1 .

The password verifier Salt field MUST be populated with the salt created during pass word key
generation, as specified in section 2.3.6.2 . An additional 16 -byte verifier is then hashed by using the
MD5 hashing algorithm and encrypted by using the key generated in section 2.3.6.2, with a block
number of 0x00000000.

The RC4 decryption stream MUST NOT be reset between decrypting EncryptedVerifier and
EncryptedVerifierHash .

2.3.6.4 Password Verification

The password verification process is specified by the following steps:

1. Generate an encryption key as specified in section 2.3.6.2 , using a block number of 0x00000000.

2. Decrypt the EncryptedVerifier field of the RC4 Encryption Header structure to obtain the

Verifier value. The resulting Verifier value MUST be an array of 16 bytes.

%5bMS-DOC%5d.pdf
%5bMS-XLS%5d.pdf

58 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

3. Decrypt the EncryptedVerifierHash field of the RC4 Encryption Header structure to obtain the
hash of the Verifier value. The number of bytes used by the encrypted Verifier hash MUST be

16.

4. Calculate the MD5 hash value of the results of step 2.

5. Compare the results of step 3 and step 4. If the two hash values do not match, the password is
incorrect.

The RC4 decryption stream MUST NOT be reset between decrypting EncryptedVerifier and
EncryptedVerifierHash .

2.3.7 XOR Obfuscation

XOR obfuscation is supported for backward compatibility with older file formats.

2.3.7.1 Binary Document Password Verifier Derivation Method 1

The CreatePasswordVerifier_Method1 procedure specifies how a 16 -bit password ver ifier is
obtained from an ASCII password string. The password verifier is used in XOR obfuscation as well as
for document write protection.

The CreatePasswordVerifier_Method1 procedure takes the following parameter:

Á Password: An ASCII string that specifie s the password to be used when generating the verifier.

 FUNCTION CreatePasswordVerifier_Method1

 PARAMETERS Password

 RETURNS 16- bit unsigned integer

 DECLARE Verifier AS 16 - bit unsigned integer

 DECLARE PasswordArray AS array of 8 - bit unsigne d integers

 SET Verifier TO 0x0000

 SET PasswordArray TO (empty array of bytes)

 SET PasswordArray[0] TO Password.Length

 APPEND Password TO PasswordArray

 FOR EACH PasswordByte IN PasswordArray IN REVERSE ORDER

 IF (Verifier BITWISE AND 0x4000) is 0x0000

 SET Intermediate1 TO 0

 ELSE

 SET Intermediate1 TO 1

 ENDIF

 SET Intermediate2 TO Verifier MULTIPLED BY 2

 SET most significant bit of Intermediate2 TO 0

 SET Intermediate3 TO Intermediate1 BITWISE OR Intermediate2

 SET Verifier TO Intermediate3 BITWISE XOR PasswordByte

 ENDFOR

 RETURN Verifier BITWISE XOR 0xCE4B

 END FUNCTION

For more information, see section 4.

2.3.7.2 Binary Document XOR Array Initialization Method 1

The CreateXorArray_Method1 procedure specifies how a 16 -byte XOR obfuscation array is
initialized. The procedure takes the following parameter:

59 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Á Password: An ASCII string that specifies t he password to be used to encrypt the data. Password
MUST NOT be longer than 15 characters.

 SET PadArray TO (0xBB, 0xFF, 0xFF, 0xBA, 0xFF, 0xFF, 0xB9, 0x80,

 0x00, 0xBE, 0x0F, 0x00, 0xBF, 0x0F, 0x00)

 SET InitialCode TO (0xE1F0, 0x1D0F, 0xCC9C, 0x84C0, 0x110C,

 0x0E10, 0xF1CE, 0x313E, 0x1872, 0xE139,

 0xD40F, 0x84F9, 0x280C, 0xA96A, 0x4EC3)

 SET XorMatrix TO (0xAEFC, 0x4DD9, 0x9BB2, 0x2745, 0x4E8A, 0x9D14, 0x2A09,

 0x7B61, 0xF6C 2, 0xFDA5, 0xEB6B, 0xC6F7, 0x9DCF, 0x2BBF,

 0x4563, 0x8AC6, 0x05AD, 0x0B5A, 0x16B4, 0x2D68, 0x5AD0,

 0x0375, 0x06EA, 0x0DD4, 0x1BA8, 0x3750, 0x6EA0, 0xDD40,

 0xD849, 0xA0B3, 0x5147, 0xA28E, 0x553D, 0xAA 7A, 0x44D5,

 0x6F45, 0xDE8A, 0xAD35, 0x4A4B, 0x9496, 0x390D, 0x721A,

 0xEB23, 0xC667, 0x9CEF, 0x29FF, 0x53FE, 0xA7FC, 0x5FD9,

 0x47D3, 0x8FA6, 0x0F6D, 0x1EDA, 0x3DB4, 0x7B68, 0xF6D0,

 0xB861, 0x60E3, 0xC1C6, 0x93AD, 0x377B, 0x6EF6, 0xDDEC,

 0x45A0, 0x8B40, 0x06A1, 0x0D42, 0x1A84, 0x3508, 0x6A10,

 0xAA51, 0x4483, 0x8906, 0x022D, 0x045A, 0x08B4, 0x1168,

 0x76B4, 0xED68, 0xCAF1, 0x85C3, 0x1BA7, 0x374E, 0x6E9C,

 0x3730, 0x6E60, 0xDCC0, 0xA9A1, 0x4363, 0x86C6, 0x1DAD,

 0x3331, 0x6662, 0xCCC4, 0x89A9, 0x0373, 0x06E6, 0x0DCC,

 0x1021, 0x2042, 0x4084, 0x8108, 0x1231, 0x2462, 0x48C4)

 FUNCTION CreateXorArray_Method1

 PARAMETERS Password

 RETURNS array of 8 - bit unsigned integers

 DECLARE XorKey AS 16 - bit unsigned integer

 DECLARE ObfuscationArray AS array of 8 - bit unsigned integers

 SET XorKey TO CreateXorKey_Method1(Password)

 SET Index TO Password.Length

 SET ObfuscationArray TO (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)

 IF Index MODUL O 2 IS 1

 SET Temp TO most significant byte of XorKey

 SET ObfuscationArray[Index] TO XorRor(PadArray[0], Temp)

 DECREMENT Index

 SET Temp TO least significant byte of XorKey

 SET PasswordLastChar TO Password[Password. Length MINUS 1]

 SET ObfuscationArray[Index] TO XorRor(PasswordLastChar, Temp)

 END IF

 WHILE Index IS GREATER THAN to 0

 DECREMENT Index

 SET Temp TO most significant byte of XorKey

 SET ObfuscationArray[Index] TO XorRor (Password[Index], Temp)

 DECREMENT Index

 SET Temp TO least significant byte of XorKey

 SET ObfuscationArray[Index] TO XorRor(Password[Index], Temp)

 END WHILE

 SET Index TO 15

 SET PadIndex TO 15 MINUS Password.Length

 WHILE PadIndex IS greater than 0

 SET Temp TO most significant byte of XorKey

 SET ObfuscationArray[Index] TO XorRor(PadArray[PadIndex], Temp)

 DECREMENT Index

 DECREMENT PadIndex

60 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 SET Temp TO least significant byte of XorKey

 SET ObfuscationArray[Index] TO XorRor(PadArray[PadIndex], Temp)

 DECREMENT Index

 DECREMENT PadIndex

 END WHILE

 RETURN ObfuscationArray

 END FUNCTION

 FUNCTION CreateXorKey_Method1

 PARAMETERS Password

 RETURNS 16 - bit unsigned integer

 DECLARE XorKey AS 16 - bit unsigned integer

 SET XorKey TO InitialCode[Password.Length MINUS 1]

 SET CurrentElement TO 0x00000068

 FOR EACH Char IN Password IN REVERSE ORDER

 FOR 7 iterations

 IF (Char BITWISE AND 0x40) IS NOT 0

 SET XorKey TO XorKey BITWISE XOR XorMatrix[CurrentElement]

 END IF

 SET Char TO Char MULTIPLIED BY 2

 DECREMENT CurrentElement

 END FOR

 END FOR

 RETURN XorKey

 END FUNCTION

 FUNCTION XorRor

 PARAMETERS byte1, byte2

 RETURNS 8- bit unsigned integer

 RETURN Ror(byte1 XOR byte2)

 END FUNCTION

 FUNCTION Ror

 PARAMETERS byte

 RETURNS 8- bit unsigned integer

 SET temp1 TO byte DIVI DED BY 2

 SET temp2 TO byte MULTIPLIED BY 128

 SET temp3 TO temp1 BITWISE OR temp2

 RETURN temp3 MODULO 0x100

 END FUNCTION

2.3.7.3 Binary Document XOR Data Transformation Method 1

Data transformed by Binary Document XOR Data Transformation Method 1 for encryption MUST be as

specified in the Encry ptData_Method1 procedure. This procedure takes the following parameters:

Á Password: An ASCII string that specifies the password to be used to encrypt the data.

Á Data: An array of unsigned 8 -bit integers that specifies the data to be encrypted.

Á XorArrayIndex: An unsigned integer that specifies the initial index into the XOR obfuscation
array to be used.

61 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 FUNCTION EncryptData_Method1

 PARAMETERS Password, Data, XorArrayIndex

 DECLARE XorArray as array of 8 - bit unsigned integers

 SET XorArray TO CreateX orArray_Method1(Password)

 FOR Index FROM 0 TO Data.Length

 SET Value TO Data[Index]

 SET Value TO (Value rotate left 5 bits)

 SET Value TO Value BITWISE XOR XorArray[XorArrayIndex]

 SET DATA[Index] TO Value

 INCREMENT XorArrayIndex

 SET XorArrayIndex TO XorArrayIndex MODULO 16

 END FOR

 END FUNCTION

Data transformed by the Binary Document XOR Data Transformation Method 1 for decryption MUST be
as specified in the DecryptData_Method1 procedure. This procedure takes the following

parameters:

Á Password: An ASCII string that specifies the password to be used to decrypt the data.

Á Data: An array of unsigned 8 -bit integers that specifies the data to be decrypted.

Á XorArrayIndex: An unsigned integer that specifies th e initial index into the XOR obfuscation
array to be used.

 FUNCTION DecryptData_Method1

 PARAMETERS Password, Data, XorArrayIndex

 DECLARE XorArray as array of 8 - bit unsigned integers

 SET XorArray TO CreateXorArray_Method1(Password)

 FOR Index FROM 0 to Data.Length

 SET Value TO Data[Index]

 SET Value TO Value BITWISE XOR XorArray[XorArrayIndex]

 SET Value TO (Value rotate right 5 bits)

 SET Data[Index] TO Value

 INCREMENT XorArrayIndex

 SET XorArrayIndex TO XorArrayIndex MODULO 16

 END FOR

 END FUNCTION

2.3.7.4 Binary Document Password Verifier Derivation Method 2

The CreatePasswordVerifier_Method2 procedure specifies how a 32 -bit password verifier is
obtained from a string of single -byte characters that has been transformed from a Unicode string. The

password verifier is used in XOR obfuscation.

Two different approaches exist for preprocessing the password string to convert it from Unicode to

single -byte characters:

Á Using the current language code identifier (LCID) , convert Unicode input into an ANSI string,
as specified in [MS -UCODEREF]. Truncate the resulting string to 15 single -byte char acters.

Á For each input Unicode character, copy the least significant byte into the single -byte string, unless

the least significant byte is 0x00. If the least significant byte is 0x00, copy the most significant
byte. Truncate the resulting string to 15 cha racters.

%5bMS-UCODEREF%5d.pdf

62 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

When writing files, the second approach MUST be used. When reading files, both methods MUST be
tried, and the password MUST be considered correct if either approach results in a match.

The CreatePasswordVerifier_Method2 procedure takes the followi ng parameter:

Á Password: A string of single -byte characters that specifies the password to be used to encrypt

the data. Password MUST NOT be longer than 15 characters. Password MUST be transformed from
Unicode to single -byte characters by using the method s pecified in this section.

 FUNCTION CreatePasswordVerifier_Method2

 PARAMETERS Password

 RETURNS 32- bit unsigned integer

 DECLARE Verifier as 32 - bit unsigned integer

 DECLARE KeyHigh as 16 - bit unsigned integer

 DECLARE KeyLow as 16 - bit unsigned integer

 SET KeyHigh TO CreateXorKey_Method1(Password)

 SET KeyLow TO CreatePasswordVerifier_Method1(Password)

 SET most significant 16 bits of Verifier TO KeyHigh

 SET least significant 16 bits of Verifi er TO KeyLow

 RETURN Verifier

 END FUNCTION

2.3.7.5 Binary Document XOR Array Initialization Method 2

The CreateXorArray_Method2 procedure specifies how a 16 -byte XOR obfuscation array is
initialized. The procedure takes the following parameter:

Á Password: A string of single -byte characters that specifies the p assword to be used to encrypt
the data. Password MUST NOT be longer than 15 characters. Password MUST be transformed from
Unicode to single -byte characters by using the method specified in section 2.3.7.4 , which results

in the password verifier matching.

 FUNCTION CreateXorArray_Method2

 PARAMETERS Password

 RETURNS array of 8 - bit unsigned integers

 DECLARE Verifier as 32 - bit unsigned integer

 DECLARE VerifierHighWord as 16 - bit unsi gned integer

 DECLARE KeyHigh as 8 - bit unsigned integer

 DECLARE KeyLow as 8 - bit unsigned integer

 SET Verifier TO CreatePasswordVerifier_Method2(Password)

 SET VerifierHighWord TO 16 most significant bits of Verifier

 SET KeyHigh TO 8 most significant bits of VerifierHighWord

 SET KeyLow TO 8 least significant bits of VerifierHighWord

 SET PadArray TO (0xBB, 0xFF, 0xFF, 0xBA, 0xFF, 0xFF, 0xB9, 0x80,

 0x00, 0xBE, 0x0F, 0x00, 0xBF, 0x0F, 0x00)

 SET ObfuscationArray TO (0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00)

 SET Index TO 0

 WHILE Index IS LESS THAN Password.Length

 SET ObfuscationArray[Index] TO Password[Index]

 INCREMENT Index

 END WHILE

 WHILE Index IS LESS THAN 16

 SET ObfuscationArray[Index] TO PadArray[Index MINUS Password.Length]

 INCREMENT Index

 END WHILE

63 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 SET Index TO 0

 WHILE Index IS LESS THAN 16

 SET Temp1 TO ObfuscationArray[Index] BITWISE XOR KeyLow

 SET ObfuscationArray[Index] TO Ror(Temp1)

 INCREMENT Index

 SET Temp1 TO ObfuscationArray[Index] BITWISE X OR KeyHigh

 SET ObfuscationArray[Index] TO Ror(Temp1)

 INCREMENT Index

 END WHILE

 RETURN ObfuscationArray

 END FUNCTION

2.3.7.6 Binary Document XOR Data Transformation Method 2

Data transformed by Binary Document XOR data transformation method 2 takes the result of an XOR
operation on each byt e of input in sequence and the 16 -byte XOR obfuscation array that is initialized
as specified in section 2.3.7.2 , except when the byte of input is 0x00 or the binary XOR of the input
and the obfus cation array element is 0x00, in which case the byte of input is not modified. When the

end of the XOR obfuscation array is reached, start again at the beginning.

2.3.7.7 Password Verification

Calculate the password verifier for the applicable password verifier derivation method, as specified in
section 2.3.7.1 or section 2.3.7.4 , depending on the document type. Compare the derived password

verifier with the password verifier stored in the file. If the two do not match, the password is in correct.

2.4 Document Write Protection

Document write protection is meant to discourage tampering with the file or sect ions of the file by

users. See section 4.1.4 for more information.

Limitations on the length of the password and the characters used by the password are
implementation -dependent. For more details about behavior variations, see [MS -DOC] and [MS -XLS] .
Unless ot herwise specified, the maximum password length MUST be 255 Unicode characters.

2.4.1 ECMA -376 Document Write Protection

ECMA-376 document write protection [ECMA -376] is as specified in [ECMA -376] Part 4 Sections
2.15.1.28, 2.15.1.94, 3.2.12, and 4.3.1.17. <24>

2.4.2 Binary Document Writ e Protection

2.4.2.1 Binary Document Write Protection Method 1

Binary documents that conform to the file format as specified in [MS -DOC] MUST store the write
protection password in the file in plaintext as specified in [MS -DOC] section 2.9.276.

2.4.2.2 Binary Document Write Protection Method 2

Binary documents that conform to the file format as specified in [MS -XLS] MUST store the write
protection password verifier in the file, as specified in [MS -XLS] section 2.2.9 and created by using the

%5bMS-DOC%5d.pdf
%5bMS-XLS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-DOC%5d.pdf
%5bMS-XLS%5d.pdf

64 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

method specified in section 2.3.7.1 . When a binary d ocument using write protection method 2 is write
protected, the document can also be encrypted by using one of the methods specified in section

2.3 .<25>

2.4.2.3 Binary Document Write Protection Method 3

Binary documents that conform to the file format as specified in [MS -PPT] MUST store the write
protection password in the file in plaintext, as specified in [MS -PPT] section 2.4.7. When a binary
document using write protection method 3 is write protected, it SH OULD NOT <26> also be encrypted

by using one of the methods specified in section 2.3 .

If the user has not supplied an encryption password and the document is encrypted, the default
encryption choice using the techniques specified in section 2.3 MUST be the following password:
" \ x2f \ x30 \ x31 \ x48 \ x61 \ x6e \ x6e \ x65 \ x73 \ x20 \ x52 \ x75 \ x65 \ x73 \ x63 \ x68 \ x65 \ x72 \ x2f \ x30 \ x31".

2.4.2.4 ISO Write Protection Method

Cases where binary documents use the following hashing algorit hm, intended to be compatible with
ISO/IEC 29500 (for more information, see [ISO/IEC29500 -1:2011]), are specified in [MS -XLSB] . The
ISO password hashing algor ithm takes the following parameters:

Á Password: An array of Unicode characters specifying the write protection password. The
password MUST be a minimum of 1 and a maximum of 255 Unicode characters.

AlgorithmName: A Unicode string specifying the name of the cryptographic hash algorithm used to

compute the password hash value. The values in the following table are reserved. (Values that are not
defined MAY <27> be used, and a compliant implementation is not required to suppor t all defined
values. The string MUST be at least 1 character. See section 4 for additional information.)

Value Hash algorithm

SHA-1 MUST conform to the details as specified in
[RFC4634] .

SHA-256 MUST conform to the details as specified in
[RFC4634].

SHA-384 MUST conform to the details as specified in
[RFC4634].

SHA-512 MUST conform to the details as specified in
[R FC4634].

MD5 MUST conform to MD5.

MD4 MUST conform to the details as specified in
[RFC1320] .

MD2 MUST conform to the details as specified in
[RFC1319] .

RIPEMD-128 MUST conform to the details as specified in
[ISO/IEC 10118] .

RIPEMD-160 MUST conform to the details as specified in
[ISO/IEC 10118].

WHIRLPOOL MUST conform to the details as specified in
[ISO/IEC 10118].

%5bMS-PPT%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=252374
%5bMS-XLSB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90486
http://go.microsoft.com/fwlink/?LinkId=90274
http://go.microsoft.com/fwlink/?LinkId=90273
http://go.microsoft.com/fwlink/?LinkID=141969&clcid=0x409

65 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Á Salt: An array of bytes that specifies the salt value used during password hash generation. When
computing hashes for new passwords, this MUST be generated using an arbitrary pseudoran dom

function. When verifying a password, the salt value retrieved from the document MUST be used.
The salt MUST NOT be larger than 65,536 bytes.

Á SpinCount: A 32 -bit unsigned integer that specifies the number of times to iterate on a hash of a
password. It MUST NOT be greater than 10,000,000.

Let H() be an implementation of the hashing algorithm specified by AlgorithmName , iterator be an
unsigned 32 -bit integer, H n be the hash data of the n th iteration, and a plus sign (+) represent
concatenation. The initia l password hash is generated as follows.

Á H0 = H(salt + password)

The hash is then iterated using the following approach.

Á Hn = H(H n-1 + iterator)

where iterator is initially set to 0 and is incremented monotonically on each iteration until SpinCount

iterati ons have been performed. The value of iterator on the last iteration MUST be one less than
SpinCount . The final hash is then H final = H SpinCount -1.

2.5 Binary Document Digital Signatures

This section specifies the process used to create and store digital signatures within Office binary
documents, and it specifies XML Advanced Electronic Signature s [XAdES] support for all documents
using xmldsig digital signatures. There are two digital signature formats. The first is referred to as a
CryptoAPI digital signature, and the second is ref erred to as an xmldsig digital signature.

The process used by ECMA -376 documents [ECMA -376] for xmldsig digital signatures is very similar to

the process used by xmldsig digital signatures wh en applied to Office binary documents, as specified
in [ECMA -376] Part 2 Section 12. Both document types use an XML signature format as specified in
[XMLDSig] . For details about a schema refe rence, see [ECMA -376] Part 2 Section 12.2.4.

2.5.1 CryptoAPI Digital Signature Structures and Streams

2.5.1.1 TimeEncoding Structure

The TimeEncoding structure specifies a date and time in Coordinated Universal Time (UTC) , with
the most significant 32 bits and the least significant 32 bits of the structure swapped. To be processed

as a valid UTC time, HighDateTime and LowDateTime MUST be assigned to a FILETIME structure
as specified in [MS -DTYP] . Because of the reverse ordering, the HighDateTime field MUST be
assigned to the dwHighDateTime field of the FILETIME structure, and the LowDateTime field
MUST be assigned to the dwLowDateTime field of the FILETIME structure. After the
HighDateTime and LowDateTime fields are correctly assigned to a FILETIME structure, the UTC
time can be obtained.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HighDateTime

LowDateTime

HighDateTime (4 bytes): An unsigned integer specifying the high order 32 bits of a UTCTime .

LowDateTime (4 bytes): An unsigned integer specifying the low order 32 bits of a UTCTime .

http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=200054
http://go.microsoft.com/fwlink/?LinkId=130861
%5bMS-DTYP%5d.pdf

66 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2.5.1.2 CryptoAPI Digital Signature CertificateInfo Structure

The CertificateInfo structure has the format that is shown in the following diagram.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CertificateInfoSize

SignerLength

IssuerLength

ExpireTime

...

SignTime

...

AlgIDHash

SignatureSize

EncodedCertificateSize

Version

SerialNumberSize

IssuerBlobSize

Reserved

SignerName (variable)

...

IssuerName (variable)

...

Signature (variable)

...

EncodedCertificate (variable)

67 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

...

SerialNumber (variable)

...

IssuerBlob (variable)

...

CertificateInfoSize (4 bytes): An unsigned integer specifying the number of bytes used by the

remainder of this structure, not including CertificateInfoSize .

SignerLength (4 bytes): An unsigned integer specifying the number of characters n eeded to store
the SignerName field, not including the terminating null character.

IssuerLength (4 bytes): An unsigned integer specifying the number of characters needed to store
the IssuerName field, not including the terminating null character.

ExpireTim e (8 bytes): A TimeEncoding structure (section 2.5.1.1) specifying the expiration time of
this signature.

SignTime (8 bytes): A TimeEncoding structure specifying the time this signature was create d.

AlgIDHash (4 bytes): A signed integer specifying the algorithm identifier. It MUST be 0x00008003
(MD5).

SignatureSize (4 bytes): An unsigned integer specifying the number of bytes used by the
Signature field.

EncodedCertificateSize (4 bytes): An unsigned integer specifying the number of bytes used by the

EncodedCertificate field.

Version (4 bytes): A value that MUST be 0x00000000.

SerialNumberSize (4 bytes): An unsigned integer specifying the number of bytes used by the
SerialNumber field.

Iss uerBlobSize (4 bytes): An unsigned integer specifying the number of bytes used by the
IssuerBlob field.

Reserved (4 bytes): A value that MUST be 0x00000000.

SignerName (variable): A null - terminated Unicode string specifying the name of the signer.

IssuerNa me (variable): A null - terminated Unicode string specifying the name of the issuer.

Signature (variable): A binary representation of the signature, generated as specified in [RFC3280] ,

except s tored in little -endian form.

EncodedCertificate (variable): An encoded representation of the certificate. MUST contain the
ASN.1 [ITUX680 -1994] DER encoding of an X.509 certificate. For more details, see [RFC3280].

SerialNumber (variable): An array of bytes specifying the serial number of the certificate as

specified in [RFC3280], with the least significant byte first. Any leading 0x00 bytes MUST be
truncated.

IssuerBlob (variable): An ASN.1 s tructure as specified in IETF [RFC3280] section 4.1.2.4.

http://go.microsoft.com/fwlink/?LinkId=90414
http://go.microsoft.com/fwlink/?LinkId=120478

68 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2.5.1.3 CryptoAPI Digital Signature Structure

A CryptoAPI digital signature structure MUST contain exactly one IntermediateCertificatesStore
and MUST contain at least one CryptoAPI Digital Signature CertificateInfo structure (section

2.5.1.2).

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

CertificateSize

IntermediateCertificatesStore (variable)

...

Reserved

CertificateInfoArray (variable)

...

EndMarker

CertificateSize (4 bytes): An unsigned integer specifying the number of bytes in the
IntermediateCertificatesStore field.

IntermediateCertificatesStore (variable): A binary representation of the certificates in the
certificate chains of the certificates used to sign the document, e xcluding the self -signed root CA
certificates and end -entity certificates. This store is generated as specified in [MS -OSHARED]

section 2.3.9.1.

Reserved (4 bytes): A value that MUST be 0x00000000.

CertificateInfoArray (variable): An array that MUST contain a single CertificateInfo structure for
every signature included in this stream.

EndMarker (4 bytes): A value that MUST be 0x00000000.

2.5.1.4 \ _signatures Stream

A binary document containing a CryptoAPI digital signature MUST have a stream named "_signatures"
in the root storage. The contents of the \ _signatures stream MUST contain exactly one CryptoAPI
Digital Signature structure (section 2.5.1.3).

2.5.1.5 CryptoAPI Digital Signature Generation

The hash used to generate a document signature is created by recursively traversing the OLE
compound file streams and storages. Certain streams a nd storages MUST NOT be used, as specified
later in this section. A document MAY have more than one signature, each of which MUST be
generated by using the GenerateSignature function. Each individual certificate MUST be stored in

the CertificateInfoArray of the CryptoAPI Digital Signature structure.

Let H() be a hashing function, which MUST be MD5 , and a plus sign (+) represent concatenation. Let
HashObject be an object that can be initialized, that can append data in blocks into the object, and
that can finalize to extract the resultant hash value H final .

%5bMS-OSHARED%5d.pdf

69 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Let ClsID be the GUID identifier for an OLE compound file storage as specified in [MS -CFB] .

Let TimeStamp be a FILETIME structure as specified in [MS -DTYP] , containing the current system

time, expressed in Coordinated Universal Time (UTC). TimeStamp MUST be stored in the CryptoAPI
Digital Sign ature Structure SignTime field, as specified in section 2.5.1.3 .

Let ExcludedStorages be defined as follows:

Á 0x06DataSpaces

Á 0x05Bagaaqy23kudbhchAaq5u2chNd

Let ExcludedStreams be defined as follows :

Á _signatures

Á 0x09DRMContent

 FUNCTION GenerateSignature

 PARAMETERS Storage, Certificate

 RETURNS Signature

 CALL HashObject.Initialize

 CALL GenerateSignatureHash(Storage, HashObject, IsFiltered, AppFilter)

 SET Hdata TO HashObject.Finalize

 SET Hfinal TO H(Hdata + TimeStamp)

 SET Signature TO RFC3447(Hfinal, Certificate)

 RETURN Signature

 END FUNCTION

In the GenerateSignatureHash function, IsFiltered MUST be true if the document conforms to the
details as specified in [MS -XLS] and the stream name is "Workbook" or if the document conforms to

the details as specified in [MS -PPT] and the stream name is "Current User". It MUST be false for all
other document type s and streams.

For documents that conform to the details as specified in [MS -XLS], let AppFilter be defined as the
process specified in [MS -XLS] section 2.1.7.15, which appends data to HashObject , excluding a
portion of the stream from being used in the ha shing operation.

For documents that conform to the details as specified in [MS -PPT], let AppFilter be defined as a
process that returns without appending data to HashObject . The result is that the name of the

CurrentUser stream MUST be appended to the Has hObject , but the data contained within the
CurrentUser stream MUST NOT be appended to the HashObject .

When stream or storage names are appended to a HashObject , the terminating Unicode null
character MUST NOT be included.

Let SORT be a string sorting metho d that is case sensitive and ascending and that skips any
nonprintable characters, such that if two streams named "Data" and
"0x05DocumentSummaryInformation" are input, the stream named "Data" is ordered first.

 FUNCTION GenerateSignatureHash

 PARAMETERS Storage, HashObject, IsFiltered, AppFilter

 RETURNS VOID

 DECLARE StorageNameArray as (empty array of Unicode strings)

 DECLARE StreamNameArray as (empty array of Unicode strings)

 SET ClsID TO Storage.GUID

 CALL HashObject.AppendData(ClsID)

 FOR EACH Child IN Storage.Children

 IF Child IS a storage AND Child.Name NOT IN ExcludedStorages

%5bMS-CFB%5d.pdf
%5bMS-DTYP%5d.pdf
%5bMS-XLS%5d.pdf
%5bMS-PPT%5d.pdf

70 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 APPEND Child.Name to StorageNameArray

 END IF

 IF Child IS a stream AND Child.Name N OT IN ExcludedStreams

 APPEND Child.Name to StreamNameArray

 END IF

 END FOR

 SORT StorageNameArray SORT StreamNameArray

 FOR EACH StreamName IN StreamNameArray

 CALL HashObject.AppendData(StreamName)

 SET ChildStream TO Storage.Children[StreamName]

 IF IsFiltered IS true

 CALL AppFilter(ChildStream, HashObject)

 ELSE

 CALL HashObject.AppendData(ChildStream.Data)

 ENDIF

 ENDFOR

 FOR EACH StorageName IN StorageNameArray

 CALL HashObject.AppendData(StorageName)

 SET ChildStorage TO Storage.Children[StorageName]

 CALL GenerateSignatureHash(ChildStorage, HashObject,

I sFiltered, AppFilter)

 END FOR

 END FUNCTION

When signing H final , the certificate MUST be an RSA certificate as specified in [RFC3447] , and the
signing operation MUST be performed as specif ied in [RFC3447] section 9.2.

If a document is protected as specified in section 2.2 , the hash MUST be created by first appending

the unencrypted form of the storage that is decrypted from the 0x 09DRMContent stream, followed

by the entire original encrypted file storage with the 0x09DRMContent stream excluded as noted
previously.

2.5.2 Xmldsig Digital Signature Elements

A binary document digital signature is specified as containing the elements that are specified in the
following subsections. If not explicitly stated in each subsection, the content of an element MUST be
generated as specified in [XMLDSig] .

2.5.2.1 SignedInfo Element

The SignedInfo element MUST contain the following elements:

Á CanonicalizationMethod , where the algorithm MUST be as specified in [Can -XML-1.0] .

Á Reference , where the URI attribute MUST be "#idPackageObject", and DigestMethod is
provided by the ap plication. <28>

Á Reference , where the URI attribute MUST be "#idOfficeObject", and DigestMethod is provided
by the application. <29>

2.5.2.2 SignatureValue Element

The SignatureValue element contains the value of the signature, as specified in [XMLDSig] .

http://go.microsoft.com/fwlink/?LinkId=90422
http://go.microsoft.com/fwlink/?LinkId=130861
http://go.microsoft.com/fwlink/?LinkId=120197
http://go.microsoft.com/fwlink/?LinkId=130861

71 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

2.5.2.3 KeyInfo Element

The KeyInfo element contains th e key information, as specified in [XMLDSig] .

2.5.2.4 idPackageObject Object Element

The idPackageObject element contains the following:

Á A Manifest element as specified in [XMLDSig] , which c ontains Reference elements corresponding
to each stream that is signed. Except for streams and storages enumerated later in this section,
all streams and storages MUST be included in the Manifest element. DigestMethod is provided

by the application. <30>

Á A SignatureProperties element containing a SignatureProperty element with a time stamp, as
specified in [ECMA -376] Part 2 Section 12.2.4.20.

When constructin g the Manifest element, the following storages and any storages or streams
contained within listed storages MUST be excluded:

Á 0x05Bagaaqy23kudbhchAaq5u2chNd

Á 0x06DataSpaces

Á Xmlsignatures

Á MsoDataStore

The following streams MUST also be excluded:

Á 0x09DRMContent

Á _signatures

Á 0x05SummaryInformation

Á 0x05DocumentSummaryInformation

If the document conforms to the details as specified in [MS -XLS] , and the name of the stream is
Workbook, the stream MUST be filtered as specif ied in [MS -XLS] section 2.1.7.21.

If the document conforms to the details as specified in [MS -PPT], the hash of the CurrentUser stream
MUST be calculated when verifying the signature as if the stream were empty, which would be the
result of hashing 0 bytes.

2.5.2.5 idOfficeObject Object Element

The idOfficeObject element contains the following:

Á A SignatureProperties element containing a SignatureProperty element, which MUST contain
a SignatureInfoV1 element that specifies the details of a digital signature in a document. The

following XML Sch ema specifies the contents of the SignatureProperty element:

 <?xml version="1.0" encoding="utf - 8"?>

 <xsd:schema targetNamespace="http://schemas.microsoft.com/office/2006/digsig"

elementFormDefault="qualified" xmlns="http://schemas.microsoft.com/office/2006 /digsig"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:simpleType name="ST_PositiveInteger">

 <xsd:restriction base="xsd:int">

 <xsd:minExclusive value="0" />

 </xsd:restriction>

 </xsd:simpleType>

http://go.microsoft.com/fwlink/?LinkId=130861
http://go.microsoft.com/fwlink/?LinkId=130861
http://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-XLS%5d.pdf
%5bMS-PPT%5d.pdf

72 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 <xsd:simpleType name="ST_SignatureCom ments">

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="255" />

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="ST_SignatureProviderUrl">

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="2083" />

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="ST_SignatureText">

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="100" />

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="ST_SignatureType">

 <xsd:restriction base="xsd:int">

 <xsd:enumeration value="1"></xsd:enumeration>

 <xsd:enumeration value="2"></xsd:enumeration>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="ST_Version">

 <xsd:restriction base="xsd:string">

 <xsd:maxLength value="64" />

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:simpleType name="ST_UniqueIdentifierWithBraces">

 <xsd:restriction base="xsd:string">

 <xsd:pattern value=" \ {[0 - 9a- fA - F]{8} \ - [0 - 9a- fA - F]{4} \ - [0 - 9a- fA - F]{4} \ - [0 - 9a- fA - F]{4} \ -

[0 - 9a- fA - F]{12} \ }|" />

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:group name="EG_RequiredChildren">

 <xsd:sequence>

 <xsd:element name="SetupID" type="ST_UniqueIdentifierWithBraces"></xsd:element>

 <xsd:element name="Signature Text" type="ST_SignatureText"></xsd:element>

 <xsd:element name="SignatureImage" type="xsd:base64Binary"></xsd:element>

 <xsd:element name="SignatureComments" type="ST_SignatureComments"></xsd:element>

 <xsd:element name="WindowsVersion" type="ST_Version"></xsd:element>

 <xsd:element name="OfficeVersion" type="ST_Version"></xsd:element>

 <xsd:element name="ApplicationVersion" type="ST_Version"></xsd:element>

 <xsd:element name="Monitors" typ e="ST_PositiveInteger"></xsd:element>

 <xsd:element name="HorizontalResolution" type="ST_PositiveInteger"></xsd:element>

 <xsd:element name="VerticalResolution" type="ST_PositiveInteger"></xsd:element>

 <xsd:element name="ColorDepth" type="S T_PositiveInteger"></xsd:element>

 <xsd:element name="SignatureProviderId"

type="ST_UniqueIdentifierWithBraces"></xsd:element>

 <xsd:element name="SignatureProviderUrl" type="ST_SignatureProviderUrl"></xsd:element>

 <xsd:element name="Signat ureProviderDetails" type="xsd:int"></xsd:element>

 <xsd:element name="SignatureType" type="ST_SignatureType"></xsd:element>

 </xsd:sequence>

 </xsd:group>

 <xsd:group name="EG_OptionalChildren">

 <xsd:sequence>

 <xsd:element name="Delegat eSuggestedSigner" type="xsd:string"></xsd:element>

 <xsd:element name="DelegateSuggestedSigner2" type="xsd:string"></xsd:element>

 <xsd:element name="DelegateSuggestedSignerEmail" type="xsd:string"></xsd:element>

 <xsd:element name="Manifest HashAlgorithm" type="xsd:anyURI"

minOccurs="0"></xsd:element>

 </xsd:sequence>

 </xsd:group>

 <xsd:group name="EG_OptionalChildrenV2">

 <xsd:sequence>

 <xsd:element name="Address1" type="xsd:string"></xsd:element>

 <xsd:element name="Addr ess2" type="xsd:string"></xsd:element>

 </xsd:sequence>

 </xsd:group>

 <xsd:complexType name="CT_SignatureInfoV1">

 <xsd:sequence>

73 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 <xsd:group ref="EG_RequiredChildren" />

 <xsd:group ref="EG_OptionalChildren" minOccurs="0" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="CT_SignatureInfoV2">

 <xsd:sequence> <xsd:group ref="EG_OptionalChildrenV2" minOccurs="0" />

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="SignatureInfoV1" type="CT_Signat ureInfoV1"></xsd:element>

 <xsd:element name="SignatureInfoV2" type="CT_SignatureInfoV2"></xsd:element>

 </xsd:schema>

The child elements of the SignatureInfoV1 element are further specified as follows:

ApplicationVersion: The version of the application t hat created the digital signature.

ColorDepth: The color depth of the primary monitor of the computer on which the digital signature
was created.

HorizontalResolution: The horizontal resolution of the primary monitor of the computer on which
the digital si gnature was created.

ManifestHashAlgorithm: An optional element containing a URI that identifies the particular hash
algorithm for the signature. The value of this element MUST be ignored.

Monitors: The count of monitors on the computer where the digital signature was created.

OfficeVersion: The version of the application suite that created the digital signature.

SetupID: A GUID that can be cross - referenced with the identifier of the signature line stored in the
document content.

SignatureComments: The com ments on the digital signature.

SignatureImage: An image for the digital signature.

SignatureProviderDetails: The details of the signature provider. The value MUST be an integer
computed from a bitmask of the flags that are described in the following table .

Value Description

0x00000000 Specifies that there are no restrictions on the provider's usage.

0x00000001 Specifies that the provider MUST only be used for the user interface (UI).

0x00000002 Specifies that the provider MUST only be used for invisible signatures.

0x00000004 Specifies that the provider MUST only be used for visible signatures.

0x00000008 Specifies that the application UI MUST be used for the provider.

0x00000010 Specifies that the application stamp UI MUST be used for the provider.

SignatureProviderId: The class identifier of the signature provider. <31>

SignatureProviderUrl: The URL of the software used to generate the digital signature.

SignatureText: The text of actual signature in the digital signature.

SignatureType: The type of the digital signature. Its value MUST be one of those in the following
table.

74 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Value Description

1 The digital signature MUST NOT be printed.

2 The digital signature MUST b e printed.

If set to 2, there MUST be two additional objects in the signature with the following identifier values:

Á idValidSigLnImg: The image of a valid signature.

Á idInvalidSigLnImg: The image of an invalid signature.

VerticalResolution: The vertical res olution of the primary monitor of the computer on which the
digital signature was created.

WindowsVersion: The version of the operating system on which the digital signature was created.

DelegateSuggestedSigner: The name of a person to whom the signature has been delegated.

DelegateSuggestedSigner2: The title of a person to whom the signature has been delegated.

DelegateSuggestedSignerEmail: The email address of a person to whom the signature has been

delegated.

The child elements of the SignatureInfoV2 element are specified as follows:

Address1: The location at which the signature was created.

Address2: The location at which the signature was created.

The optional SignatureInfoV2 element is used to provide additi onal information to the
SignatureProductionPlace element, which is specified in [XAdES] section 7.2.7.

2.5.2.6 XAdES Elements

XML Advanced Electronic Signatures [XAdES] extensions to xmldsig signatures MAY <32> be presen t
in either binary or ECMA -376 documents [ECMA -376] when using xmldsig signatures. XAdES -EPES
through XAdES -X-L extensions are specified within a signature. Unless otherwise specified, any

op tional elements as specified in [XAdES] are ignored.

The Object element containing the information as specified in [XAdES] has a number of optional
elements, and many of the elements have more than one method specified. A document compliant
with this file format uses the following options:

Á The SignedSignatureProperties element MUST contain a SigningCertificate property as
specified in [XAdES] section 7.2.2.

Á A SigningTime element MUST be present as specified in [XAdES] section 7.2.1.

Á A SignaturePolicyIdentifier element MUST be present as specified in [XAdES] section 7.2.3.

Á If the information as specified in [XAdES] contains a t ime stamp as specified by the requirements
for XAdES -T, the time stamp information MUST be specified as an EncapsulatedTimeStamp
element containing DER encoded ASN.1. data.

Á If the information as specified in [XAdES] contains references to validation data, the certificates
used in the certificate chain, except for the signing certificate, MUST be contained within the
CompleteCertificateRefs element as specified in [XAdES] section 7.4.1. In addition, for the

signature to be considered a well - formed XAdES -C signature, a CompleteRevocationRefs
element MUST be present, as specified in [XAdES] section 7.4.2.

http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=151586
http://go.microsoft.com/fwlink/?LinkId=200054

75 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Á If the information as specified in [XAdES] contains time stamps on references to validation data,
the SigAndRefsTimestamp element as specified in [XAdES] sect ion 7.5.1 and [XAdES] section

7.5.1.1 MUST be used. The SigAndRefsTimestamp element MUST specify the time stamp
information as an EncapsulatedTimeStamp element containing DER encoded ASN.1. data.

Á If the information as specified in [XAdES] contains properti es for data validation values, the
CertificateValues and RevocationValues elements MUST be constructed as specified in
[XAdES] section 7.6.1 and [XAdES] section 7.6.2. Except for the signing certificate, all certificates
used in the validation chain MUST b e entered into the CertificateValues element.

There MUST be a Reference element specifying the digest of the SignedProperties element, as
specified in [XAdES], section 6.2.1. A Reference element is placed in one of two parent elements, as
specified in [XMLDSig] :

Á The SignedInfo element of the top - level Signature XML.

Á A Manifest element contained within an Object element.

A document compliant with this file format SHOULD <33> place the Reference element specifying the

digest of the SignedProperties element within the SignedInfo element. If the Reference element
is instead placed in a Manifest element, the containing Object element MUST have an id attribute set
to "idXAdESReferenceObject".

2.5.3 _xmlsignatures Storage

Digital signatures MUST be stored as streams contained in a storage named "_xmlsignatures", based
on the root of the compound document. Streams containing a signature MUST be named using a base -
10 string representation of a random number. The name of the s tream MUST NOT be the same as an

existing signature contained within the storage. A single signature is stored directly into each stream,
as UTF-8 characters, with no leading header. The content of each stream MUST be a valid signature as
specified in [XMLDSig] and generated as specified in section 2.5.2 . More than one signature can be
present in the "_xmlsignatures" storage.

http://go.microsoft.com/fwlink/?LinkId=130861
http://go.microsoft.com/fwlink/?LinkId=130861

76 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

3 Structur e Examples

This section provides examples of the following structures:

Á An ECMA-376 document [ECMA -376] conforming to the IRMDS structure.

Á Office binary data file structures with corresponding hexadecimal and graphical representation.

The example for the ECMA -376 document [ECMA -376] contains the following streams and storages:

Á 0x06DataSpaces storage:

Á Version stream containing a DataSpaceVersionInfo structure as specified in section 3.1 .

Á DataSpaceMap stream containing a DataSpaceMap structure as specified in section 3.2 .

Á DataSpaceInf o storage:

Á DRMEncryptedDataSpace stream containing a DataSpaceDefinition structure as
described in section 3.3 .

Á TransformInfo storage:

Á 0x06Primary stream containing an IRMDSTransformInfo structure as described in
section 3.4 .

Á EUL - ETRHA1143ZLUDD412YTI3M5CTZ stream containing an EndUserLicenseHeader
structure and a certificate chain as described in section 3.5 .

Á EncryptedPackage stream.

Á 0x05SummaryInformation stream.

Á 0x05DocumentSummaryInformation stream.

Note that not all of the streams and storages in the file, including the 0x05SummaryInformation
stream and 0x05DocumentSummaryInformation stream, are specified in the IRMDS structure,
and examples are not provided for those streams in this section. OLE compound files conforming to
this structure frequently contain other storages and streams.

3.1 Version Stream

This section provides an example of a Version stream that contains a DataSpaceVersionInfo
structure (section 2.1.5).

 00000000: 3C 00 00 00 4D 00 69 00 63 00 72 00 6F 00 73 00

 00000010: 6F 00 66 00 74 00 2E 00 43 00 6F 00 6E 00 74 00

 00000020: 61 00 69 00 6E 00 65 00 72 00 2E 00 44 00 61 00

 00000030: 74 00 61 00 53 00 70 00 61 00 63 00 65 00 73 00

 00000040: 01 00 00 00 01 00 00 00 01 00 00 00

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

FeatureIdentifier (variable)

...

http://go.microsoft.com/fwlink/?LinkId=200054

77 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

ReaderVersion.vMajor ReaderVersion.vMinor

UpdaterVersion.vMajor UpdaterVersion.vMinor

WriterVersion.vMajor WriterVersion.vMinor

FeatureIdentifier (variable): "Microsoft.Container.DataSpaces" specifies the functionality for which
this version information applies. This string is contained in a UNICODE - LP - P4 structure (section
2.1.2); therefore, the first 4 bytes of the structure contain 0x0000003C, which specifies the
length, in bytes, of the string. The string is not null - terminated.

ReaderVersion.vMajor (2 bytes): 0x0001 specifies the major component of the reader version o f
the software component that created this structure.

ReaderVersion.vMinor (2 bytes): 0x0000 specifies the minor component of the reader version of
the software component that created this structure.

UpdaterVersion.vMajor (2 bytes): 0x0001 specifies the ma jor component of the updater version of
the software component that created this structure.

UpdaterVersion.vMinor (2 bytes): 0x0000 specifies the minor component of the updater version of
the software component that created this structure.

WriterVersion.vM ajor (2 bytes): 0x0001 specifies the major component of the writer version of the
software component that created this structure.

WriterVersion.vMinor (2 bytes): 0x0000 specifies the minor component of the writer version of the
software component that crea ted this structure.

3.2 DataSpaceMap Stream

This section provides an example of a DataSpaceMap stream that contains a DataSpaceMap

structure (section 2.1.6). The DataSpaceMap structure, in turn, contains a DataSpaceMapEntry
structure (section 2.1.6.1).

 00000000: 08 00 00 00 01 00 00 00 60 00 00 00 01 00 00 00

 00000010: 00 00 00 00 20 00 00 00 45 00 6E 00 63 00 72 00

 00000020: 79 00 70 00 74 00 65 00 64 00 50 00 61 00 63 00

 00000030: 6B 00 61 00 67 00 65 00 2A 00 00 00 44 00 52 00

 00000040: 4D 00 45 00 6E 00 63 00 72 00 79 00 70 00 74 00

 00000050: 65 00 64 00 44 00 61 00 74 00 61 00 53 00 70 00

 00000060: 61 00 63 00 65 00 00 00

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HeaderLength

EntryCount

MapEntries (variable)

...

78 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

HeaderLength (4 bytes): 0x00000008 specifies the number of bytes in the DataSpaceMap
structure before the first MapEntry .

EntryCount (4 bytes): 0x00000001 specifies the number of DataSpaceMapEntry items in the
MapEntries array.

MapEntries (variable): The contents of the MapEntries array. For more information, see section
3.2.1 .

3.2.1 DataSpaceMapEntry Structure

This section provides an example of a DataSpaceMapEntry structure (section 2.1.6.1).

 00000000: 60 00 00 00 01 00 00 00

 00000010: 00 00 00 00 20 00 00 00 45 00 6E 00 63 00 72 00

 00000020: 79 00 70 00 74 00 65 00 64 00 50 00 61 00 63 00

 00000030: 6B 00 61 00 67 00 65 00 2A 00 00 00 44 00 52 00

 00000040: 4D 00 45 00 6E 00 63 00 72 00 79 00 70 00 74 00

 00000050: 65 00 64 00 44 00 61 00 74 00 61 00 53 00 70 00

 0000006 0: 61 00 63 00 65 00 00 00

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

ReferenceComponentCount

ReferenceComponent.ReferenceComponentType

ReferenceComponent.ReferenceComponent

...

DataSpaceName

...

Length (4 bytes): 0x00000060 specifies the size, in bytes, of the DataSpaceMapEntry structure.

ReferenceComponentCount (4 bytes): 0x00000001 specifies the number of
DataSpaceReferenceComponent items (section 2.1.6.2) in the ReferenceComponents array.

ReferenceComponent.ReferenceComponentType (4 bytes): 0x00000000 specifies that the
referenced component is a stream.

ReferenceComponent.ReferenceComponent (variable): "EncryptedPackage" specifies the
functionality for which this version information applies. This string is contained in a UNICODE - LP -

P4 structure (section 2.1.2); therefore, the first 4 bytes of the structure contain 0x00000020,
wh ich specifies the length, in bytes, of the string. The string is not null - terminated.
"EncryptedPackage" matches the name of the stream in the OLE compound file that contains the
protected contents.

DataSpaceName (variable): "DRMEncryptedDataSpace" specifi es the functionality that this version
information applies to. This string is contained in a UNICODE - LP - P4 structure; therefore, the first

79 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

4 bytes of the structure contain 0x0000002A, which specifies the length, in bytes, of the string.
The string is not n ull - terminated; however, the structure is padded with 2 bytes to ensure that its

length is a multiple of 4 bytes.

3.3 DRMEncryptedDataSpace Stream

This section provides an example of a stream in the \ 0x06DataSpaces \ DataSpaceInfo storage
(section 2.2.2) that contains a DataSpaceDefinition structure (section 2.1.7).

 00000000: 08 00 00 00 01 00 00 00 2A 00 00 00 44 00 52 00

 00000010: 4D 00 45 00 6E 00 63 00 72 00 79 00 70 00 74 00

 00000020: 65 00 64 00 54 00 72 00 61 00 63 00 73 00 66 00

 00000030: 6F 00 72 00 6D 00 00 00

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

HeaderLength

TransformReferenceCount

TransformReferences

...

HeaderLength (4 bytes): 0x00000008 specifies the number of bytes in the DataSpaceDefinition
before the TransformReferences field.

TransformReferenceCount (4 bytes): 0x00000001 specifies the number of items in the
TransformReferences array.

TransformReferences (variable): "DRMEncryptedTransform" specifies the transform associated
with this DataSpaceDefinition structure. This string is contained in a UNICODE - LP - P4 structure
(section 2.1.2); therefore, the first 4 bytes of the structure contain 0x0000002A, which specifies
the length, in bytes, of the string. The string is not nu ll - terminated; however, the structure is
padded with 2 bytes to ensure that its length is a multiple of 4 bytes. "DRMEncryptedTransform"
matches the name of the transform storage contained in the \ 0x06DataSpaces \ TransformInfo

storage (section 2.2.3).

3.4 0x06Primary Stream

This section provides an example of a 0x06Primary stream that contains an IRMDSTransformInfo
structure (section 2.2.6). Note that the first portion of this structure consists of a

TransformInfoHeader structure (section 2.1.8).

 00000000: 58 00 00 00 01 00 00 00 4C 00 00 00 7B 00 43 00

 00000010: 37 00 33 00 44 00 46 00 41 00 43 00 44 00 2D 00

 00000020: 30 00 36 00 31 00 46 00 2D 00 34 00 33 00 42 00

 00000030: 30 00 2D 00 38 00 42 00 36 00 34 00 2D 00 30 00

 00000040: 43 00 36 00 32 00 30 00 44 00 32 00 41 00 38 00

 00000050: 42 00 35 00 30 00 7D 00 3E 00 00 00 4D 00 69 00

 00000060: 63 00 72 00 69 00 73 00 6F 00 66 00 74 00 2E 00

 00000070: 4D 00 65 00 74 00 61 00 64 00 61 00 74 00 61 00

 00000080: 2E 00 44 00 52 00 4D 0 0 54 00 72 00 61 00 6E 00

 00000090: 73 00 66 00 6F 00 72 00 6D 00 00 00 01 00 00 00

 000000A0: 01 00 00 00 01 00 00 00 04 00 00 00 26 2F 00 00

80 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 000000B0: 3C 3F 78 6D 6C 20 76 65 72 73 69 6F 6E 3D 22 31

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

TransformInfoHeader.TransformLength

TransformInfoHeader.TransformType

TransformInfoHeader.TransformID (variable)

...

TransformInfoHeader.TransformName (variable)

...

TransformInfoHeader.ReaderVersion.vMajor TransformInfoHeader.ReaderVersion.vMinor

TransformInfoHeader.UpdaterVersion.vMajor TransformInfoHeader.UpdaterVersion.vMinor

TransformInfoHeader.WriterVersion.vMajor TransformInfoHeader.WriterVersion.vMinor

ExtensibilityHeader

XrMLLicense (variable)

...

TransformInfoHeader.TransformLength (4 bytes): 0x00000058 specifies the number of bytes in
this structure before TransformInfoHeader.TransformName .

TransformInfoHeader.TransformType (4 bytes): 0x00000001 specifies the type of transform to
be applied.

TransformInfoHeader.TransformID (variable): "{C73DFACD -061F -43B0 -8B64 -0C620D2A8B50}"
specifies a unique, invariant identifier associated with this transform. This string is contained in a
UNICODE - LP - P4 structure (section 2.1.2); therefore, the first 4 bytes of the structure contain
0x0000004C, which specifies the length, in bytes, of the string. The string is not null - terminated.

TransformInfoHeader.TransformName (variable): "Microsoft.Metadata.DRM Transform" specifies
the logical name of the transform. This string is contained in a UNICODE - LP - P4 structure;

therefore, the first 4 bytes of the structure contain 0x0000003E, which specifies the length, in

bytes, of the string. The string is not null - ter minated; however, the structure is padded with 2
bytes to ensure that its length is a multiple of 4 bytes.

TransformInfoHeader.ReaderVersion.vMajor (2 bytes): 0x0001 specifies the major component
of the reader version of the software component that created this structure.

TransformInfoHeader.ReaderVersion.vMinor (2 bytes): 0x0000 specifies the minor component
of the reader version of the software component that created this structure.

81 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

TransformInfoHeader.UpdaterVersion.vMajor (2 bytes): 0x0001 specifies the major component
of the updater version of the software component that created this structure.

TransformInfoHeader.UpdaterVersion.vMinor (2 bytes): 0x0000 specifies the minor component
of the updater version of the software component t hat created this structure.

TransformInfoHeader.WriterVersion.vMajor (2 bytes): 0x0001 specifies the major component of
the writer version of the software component that created this structure.

TransformInfoHeader.WriterVersion.vMinor (2 bytes): 0x0000 specifies the minor component of
the writer version of the software component that created this structure.

ExtensibilityHeader (4 bytes): 0x00000004 specifies that no further information exists in the
ExtensibilityHeader structure (section 2.2.5).

XrMLLicense (variable): An XrML license as described in [MS -RMPR]. This string is contained in a

UTF - 8 - LP - P4 structure (section 2.1.3); therefore, the first 4 bytes of the structure contain
0x00002F26, which specifies the length, in bytes, of the string. The string is not null - terminated;
however, the structure is padded with 2 bytes to ensure that its leng th is a multiple of 4 bytes.

3.5 EUL -ETRHA1143ZLUDD412YTI3M5CTZ Stream

This section provides an example of an end -user license stream (section 2.2.7), which contains an
EndUserLicenseHeader structure (section 2.2.9) followed by a certificate chain containing one use
license.

 00000000: 48 00 00 00 40 00 00 00 56 77 42 70 41 47 34 41

 00000010: 5A 41 42 76 41 48 63 41 63 77 41 36 41 48 55 41

 00000020: 63 77 42 6C 41 48 49 41 51 41 42 6A 41 47 38 41

 00000030: 62 67 42 30 41 47 38 41 63 77 42 76 41 43 34 41

 00000040: 59 77 42 76 41 4 7 30 41 94 BE 00 00 3C 3F 78 6D

 00000050: 6C 20 76 65 72 73 69 6F 6E 3D 22 31 2E 30 22 3F

 00000060: 3E 3C 43 45 52 54 49 46 49 43 41 54 45 43 48 41

 00000070: 49 4E 3E 3C 43 45 52 54 49 46 49 43 41 54 45 3E

 00000080: 50 41 42 59 41 48 49 41 54 51 4 2 4D 41 43 41 41

 00000090: 64 67 42 6C 41 48 49 41 63 77 42 70 41 47 38 41

 000000a0: 62 67 41 39 41 43 49 41 4D 51 41 75 41 44 49 41

 000000b0: 49 67 41 67 41 48 67 41 62 51 42 73 41 47 34 41

 000000c0: 63 77 41 39 41 43 49 41 49 67 41 67 41 48 41 41

 000000d0: 64 51 42 79 41 48 41 41 62 77 42 7A 41 47 55 41

 000000e0: 50 51 41 69 41 45 4D 41 62 77 42 75 41 48 51 41

 000000f0: 5A 51 42 75 41 48 51 41 4C 51 42 4D 41 47 6B 41

 00000100: 59 77 42 6C 41 47 34 41 63 77 42 6C 41 43 49 41

 00000110: 50 6 7 41 38 41 45 49 41 54 77 42 45 41 46 6B 41

 00000120: 49 41 42 30 41 48 6B 41 63 41 42 6C 41 44 30 41

 00000130: 49 67 42 4D 41 45 6B 41 51 77 42 46 41 45 34 41

 00000140: 55 77 42 46 41 43 49 41 49 41 42 32 41 47 55 41

 00000150: 63 67 42 7A 41 47 6B 41 62 77 42 75 41 44 30 41

 00000160: 49 67 41 7A 41 43 34 41 4D 41 41 69 41 44 34 41

 00000170: 50 41 42 4A 41 46 4D 41 55 77 42 56 41 45 55 41

 00000180: 52 41 42 55 41 45 6B 41 54 51 42 46

Bytes 0x00000000 through 0x000000047 specify an EndUserLicenseHeader structure (section
2.2.9). The contents of this section are illustrated in section 3.5.1 .

Byte 0x00000048 through the end of this stream specify a certificate chain stored in a UTF - 8 - LP - P4

structure (section 2.1.3). The contents of this section are illustrated in section 3.5.2 .

%5bMS-RMPR%5d.pdf

82 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

3.5.1 EndUserLicenseHeader Structure

This section provides an example of an EndUserLicenseHeader structure (section 2.2.9) containing
one LicenseId (section 2.2.8) .

 00000000: 48 00 00 00 40 00 00 00 56 77 42 70 41 47 34 41

 00000010: 5A 41 42 76 41 48 63 41 63 77 41 36 41 48 55 41

 00000020: 63 77 42 6C 41 48 49 41 51 41 42 6A 41 47 38 41

 00000030: 62 67 42 30 41 47 38 41 63 77 42 76 41 43 34 41

 00000040: 59 77 42 76 41 47 30 41

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

ID_String.Length (variable)

...

ID_String.Data (variable)

...

Length (4 bytes): 0x00000048 specifies the size of the EndUserLicenseHeader structure.

ID_String.Length (variable): 0x00000040 specifies the size of the ASCII string that follows. Note
that ID_String.Size and ID_String.Data together form a UTF - 8 - LP - P4 structure (section
2.1.3).

ID_String.Data (variable):
"VwBpAG4AZABvAHcAcwA6AHUAcwBlAHIAQABjAG8AbgB0AG8AcwBvAC4AYwBvAG0A" specifies a

base64 -encoded LicenseId that has the value "Windows:user@contoso.com".

3.5.2 Certificate Chain

This section provides an example of a certificate chain contained in an end -user license stream
(section 2.2.7).

 00000040: 94 BE 00 00 3C 3F 78 6D

 00000050: 6C 20 76 65 72 73 69 6F 6E 3D 22 31 2E 30 22 3F

 00000060: 3E 3C 43 45 52 54 49 46 49 43 41 54 45 43 48 41

 00000070: 49 4E 3E 3C 43 45 52 54 49 46 49 43 41 54 45 3E

 00000080: 50 41 42 59 41 48 49 41 54 51 42 4D 41 43 41 41

 00000090: 64 67 42 6C 41 48 49 41 63 77 42 70 41 47 38 41

 000000a0: 62 67 41 39 41 43 49 41 4D 51 41 75 41 44 49 41

 000000b0: 49 67 41 67 41 48 67 41 62 51 42 73 41 47 34 41

 000000c0: 63 77 41 39 41 43 49 41 49 67 41 67 41 48 41 41

 000000d0: 64 51 42 79 41 48 41 41 62 77 42 7A 41 47 55 41

 000000e0: 50 51 41 69 41 45 4D 41 62 77 42 75 41 48 51 41

 000000f0: 5A 51 42 75 41 48 51 41 4C 51 42 4D 41 47 6B 41

 00000100: 59 77 42 6C 41 47 34 41 63 77 42 6C 41 43 49 41

 00000110: 50 67 41 38 41 45 49 41 54 77 42 45 41 46 6B 41

 00000120: 49 41 42 30 41 48 6B 41 63 41 42 6C 41 44 30 41

 00000130: 49 67 42 4D 41 45 6B 41 51 77 42 46 41 45 34 41

 00000140: 55 77 42 46 41 43 49 41 49 41 42 32 41 47 55 41

 00000150: 63 67 42 7A 41 47 6B 41 62 77 42 75 41 44 30 41

83 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 00000160: 49 67 41 7A 41 43 34 41 4D 41 41 69 41 44 34 41

 00000170: 50 41 42 4A 41 46 4D 41 55 77 42 56 41 45 55 41

 00000180: 52 41 42 55 41 45 6B 41 54 51 42 46

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Length

Data

...

Length (4 bytes): 0x0000BE94 specifies the size of the ASCII string that follows. Note that Length
and Data together form a UTF - 8 - LP - P4 structure (section 2.1.3).

Data (variable): <?xml version="1.0"?><CERTIFICATECHAIN><CERTIFICATE>PABYAH

IATQBMACAAdgBlAHIAcwBpé specifies an encoded certificate chain.

The Data field has been transformed from the form of certificate chain, as described in [MS -RMPR], in

the following way:

1. The original SOAP response contained the following certificate chain:

 <CertificateChain><Certificate><XrML version="1.2" xmlns="" purpose="Content - Licen se"><BODY

type="LICENSE" version="3.0"><ISSUEDTIME>é

2. The body of the Certificate element was then base64 -encoded to yield the following:

 PABYAHIATQBMACAAdgBlAHIAcwBpAG8AbgA9ACIAMQAuADIAIgAgAHgAbQBsAG4AcwA9ACIAIgAgAHAAdQByAHAAbwBzA

GUAPQAiAEMAbwBuAHQAZQBuAHQALQBMAGkAYwBlAG4AcwBlACIAPgA8AEIATwBEAFkAIAB0AHkAcABlAD0AIgBMAEkAQw

BFAE4AUwBFACIAIAB2AGUAcgBzAGkAbwBuAD0AIgAzAC4AMAAiAD4APABJAFMAUwBVAEUARABUAEkATQBFé

3. The base64 -encoded string was then placed in a Certificate element, again in a CertificateChain
element, and finally prefixed with "<?xml version="1.0"?>".

4. The final value of Data is thus as follows:

 <?xml version="1.0"?><CERTIFICATECHAIN><CERTIFICATE>PABYAHIATQBMACAAdgBlAH

IAcwBpAG8AbgA9ACIAMQAuADIAIgAgAHgAbQBsAG4AcwA9ACIAIgAgAHAAdQByAHAAbwBzAGUAPQAiAEMAbwBuAHQAZQB

uAHQALQBMAGkAYwBlAG4AcwBlACIAPgA8AEIATwBEAFkAIAB0AHkAcABlAD0AIgBMAEkAQwBFAE4AUwBFACIAIAB2AGUA

cgBzAGkAbwBuAD0AIgAzAC4AMAAiAD4APABJAFMAUwBVAEUARABUAEkATQBFé

3.6 EncryptionHeader Structure

This section provides an example of an EncryptionHeader structure (section 2.3.2) used by Office
Binary Document RC4 CryptoAPI Encryption (section 2.3.5) to specify the encryption properties for an
encrypted stream.

 00001400: 04 00 00 00

 00001410: 00 00 00 00 01 68 00 00 04 80 00 00 28 00 00 00

 00001420: 01 00 00 00 B0 0A 86 02 00 00 00 00 4D 00 69 00

 00001430: 63 00 72 00 6F 00 73 00 6F 00 66 00 74 00 20 00

%5bMS-RMPR%5d.pdf

84 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 00001440: 42 00 61 00 73 00 65 00 20 00 43 00 72 00 79 00

 00001450: 70 00 74 00 6F 00 67 00 72 00 61 00 70 00 68 00

 00001460: 69 00 63 00 20 00 50 00 72 00 6F 00 76 00 69 00

 00001470: 64 00 65 00 72 00 20 00 76 00 31 00 2E 00 30 00

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

Flags

SizeExtra

AlgID

AlgIDHash

KeySize

ProviderType

Reserved1

Reserved2

CSPName

...

Flags (4 bytes): 0x00000004 specifies that the encryption algorithm uses CryptoAPI encryption.

SizeExtra (4 bytes): 0x00000000 is the value in a reserved field.

AlgID (4 bytes): 0x00006801 specifies that the encryption algorithm used is RC4.

AlgIDHash (4 bytes): 0x0000800 4 specifies that SHA -1 is the hashing algorithm that is used.

KeySize (4 bytes): 0x00000028 specifies that the key is 40 bits long.

ProviderType (4 bytes): 0x00000001 specifies that RC4 is the provider type.

Reserved1 (4 bytes): 0x02860AB0 is the value in a reserved field.

Reserved2 (4 bytes): 0x00000000 is the value in a reserved field.

CSPName (variable): "Microsoft Base Cryptographic Provider v1.0" specifies the name of the
cryptographic provider supplying the RC4 implementation that was used to encrypt the file.

3.7 EncryptionVerifier Structure

This section provides an example of an EncryptionVerifier structure (section 2.3.3) using AES
encryption.

 000018B0: 10 00 00 00 92 25 50 F6 B6 4F FE 5B D3 96 DF 5E

85 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 000018C0: E9 17 DA 3A BF 86 E1 8F 64 9D 17 D0 A5 41 D9 45

 000018D0: CE FD 96 0C 14 00 00 00 12 FF DC 88 A1 BD 26 23

 000018E0: 59 32 27 1F 73 0B 8F 79 4E 45 DA B3 AB 08 04 F4

 000018F0: 0B B9 50 46 D3 91 41 84

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

SaltSize

Salt (variable)

...

EncryptedVerifier (16 bytes)

...

...

VerifierHashSize

EncryptedVerifierHash (variable)

...

SaltSize (4 bytes): 0x00000010 specifies the number of bytes used by the Salt field and the
number of bytes used by EncryptedVerifier field.

Salt (variable): "92 25 50 F6 B6 4F FE 5B D3 96 DF 5E E9 17 DA 3A" specifies a randomly generated
value used when generating the encryption key.

EncryptedVerifier (16 bytes): An encrypted form of a randomly generated, 16 -byte verifier value,
which is the randomly generated Verifier value encrypted using the algorithm chosen by the
implementation ðfor example, "BF 86 E1 8F 64 9D 17 D0 A5 41 D9 45 CE FD 96 0C".

VerifierHashSize (4 bytes): 0x000000 14 specifies the number of bytes used by the hash of the
randomly generated Verifier .

EncryptedVerifierHash (variable): An array of bytes that contains the encrypted form of the hash
of the randomly generated Verifier value ðfor example, "12 FF DC 88 A1 BD 26 23 59 32 27 1F

73 0B 8F 79 4E 45 DA B3 AB 08 04 F4 0B B9 50 46 D3 91 41 84".

3.8 \ EncryptionInfo Stream

This section provides an example of an \ EncryptionInfo stream containing detailed information used

to initialize the cryptography that is used to encrypt the \ EncryptedPackage stream.

 00001800: 03 00 02 00 24 00 00 00 A4 00 00 00 24 00 00 00

 00001810: 00 00 00 00 0E 66 00 00 04 80 00 00 80 00 00 00

 00001820: 18 00 00 00 E0 BC 3B 07 00 00 00 00 4D 00 69 00

 00001830: 63 00 72 00 6F 00 73 00 6F 00 66 00 74 00 20 00

 00001840: 45 00 6E 00 68 00 61 00 6E 00 63 00 65 00 64 00

86 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 00001850: 20 00 52 00 53 00 41 00 20 00 61 00 6E 00 64 00

 00001860: 20 00 41 00 45 00 53 00 20 00 43 00 72 00 79 00

 00001870: 70 00 74 00 6F 00 67 00 72 00 61 00 70 00 68 00

 00001880: 69 00 63 00 20 00 50 00 72 00 6F 00 76 00 69 00

 00001890: 64 00 65 00 72 00 20 00 28 00 50 00 72 00 6F 00

 000018A0: 74 00 6F 00 74 00 79 00 70 00 65 00 29 00 00 00

 000018B0: 10 00 00 00 92 25 50 F6 B6 4F FE 5B D3 96 DF 5E

 000018C0: E9 17 DA 3A BF 86 E1 8F 64 9D 17 D0 A5 41 D9 45

 000018D0: CE FD 96 0C 14 00 00 00 12 FF DC 88 A1 BD 26 23

 000018E0: 59 32 27 1F 73 0B 8F 79 4E 45 DA B3 AB 08 04 F4

 000018F0: 0B B9 50 46 D3 91 41 84

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionVersionInfo.vMajor EncryptionVersionInfo.vMinor

EncryptionHeader.Flags

EncryptionHeaderSize

EncryptionHeader

...

EncryptionVerifier

...

EncryptionVersionInfo.vMajor (2 bytes): 0x0003 specifies the major version.

EncryptionVersionInfo.vMinor (2 bytes): 0x0002 specifies the minor version.

EncryptionHeader.Flags (4 bytes): 0x00000024 specifies that the CryptoAPI implementation
(0x0000004) of the ECMA -376 AES (0x00000020) algorithm [ECMA -376] was used to encrypt the
file.

EncryptionHeaderSize (4 bytes): 0x000000A4 specifies the number of bytes used by the
EncryptionHeader structure (section 2.3.2).

EncryptionHeader (variable): This field consists of the following:

Á Flags: 0x00000024 is a bit flag that specifies that the CryptoAPI implementation (0x0000004) of
the E CMA-376 AES (0x00000020) algorithm [ECMA -376] was used to encrypt the file.

Á SizeExtra: 0x00000000 is unused.

Á AlgID: 0x0000660E specifies that the file is encrypted using the AES -128 encryption algorithm.

Á AlgIDHash: 0x00008004 specifies that the hashing alg orithm used is SHA -1.

Á KeySize: 0x00000080 specifies that the key size is 128 bits.

Á ProviderType: 0x00000018 specifies that AES is the provider type.

Á Reserved1: 0x073BBCE0 is a reserved value.

http://go.microsoft.com/fwlink/?LinkId=200054

87 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Á Reserved2: 0x00000000 is a reserved value.

Á CSPName: "Microsoft E nhanced RSA and AES Cryptographic Provider (Prototype)" specifies the

name of the cryptographic provider.

Example

 24 00 00 00 00 00 00 00 0E 66 00 00 04 80 00 00

 80 00 00 00 18 00 00 00 E0 BC 3B 07 00 00 00 00

 4D 00 69 00 63 00 72 00 6F 00 73 00 6F 00 66 00

 74 00 20 00 45 00 6E 00 68 00 61 00 6E 00 63 00

 65 00 64 00 20 00 52 00 53 00 41 00 20 00 61 00

 6E 00 64 00 20 00 41 00 45 00 53 00 20 00 43 00

 72 00 79 00 70 00 74 00 6F 00 67 00 72 00 61 00

 70 00 68 00 69 00 63 00 20 00 50 00 72 00 6F 00

 76 00 69 00 64 00 65 00 72 00 20 00 28 00 50 00

 72 00 6F 00 74 00 6F 00 74 00 79 00 70 00 65 00

 29 00 00 00

EncryptionVerifier (variable): This field consists of the following:

Á SaltSize: 0x00000010 specifies the number of bytes that make up the Salt fiel d.

Á Salt: "92 25 50 F6 B6 4F FE 5B D3 96 DF 5E E9 17 DA 3A" specifies a randomly generated value
used when generating the encryption key.

Á EncryptedVerifier: "BF 86 E1 8F 64 9D 17 D0 A5 41 D9 45 CE FD 96 0C" specifies the encrypted
form of the verifier.

Á Veri fierHashSize : 0x00000014 specifies the number of bytes needed to contain the hash of the
verifier used to generate the EncryptedVerifier field.

Á EncryptedVerifierHash: "12 FF DC 88 A1 BD 26 23 59 32 27 1F 73 0B 8F 79 4E 45 DA B3 AB 08
04 F4 0B B9 50 46 D3 9 1 41 84" specifies the encrypted hash of the verifier used to generate the
EncryptedVerifier field.

Example

 92 25 50 F6 B6 4F FE 5B D3 96 DF 5E E9 17 DA 3A

 BF 86 E1 8F 64 9D 17 D0 A5 41 D9 45 CE FD 96 0C

 14 00 00 00 12 FF DC 88 A1 BD 26 23 59 32 27 1F

 73 0B 8F 79 4E 45 DA B3 AB 08 04 F4 0B B9 50 46

 D3 91 41 84

3.9 \ EncryptionInfo Stream (Third -Party Extensible Encryption)

This section provides an example of the XML structure for an EncryptionInfo field as specified in
section 2.3.4.6 .

 <EncryptionData xmlns="urn:schemas - microsoft - com:office:office">

 <EncryptionProvider Id="{05F17A8A - 189E- 42CD- 9B21- E8F6B730EC8A}"

 Url="http://www.contoso.com/DownloadProvider/">

 <EncryptionProviderData>AAAAAA==</EncryptionProviderData>

 </EncryptionProvider>

 </Encryptio nData>

EncryptionData xmlns: "urn:schemas -microsoft -com:office:office" specifies the XML namespace for
this XML fragment.

88 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

EncryptionProvider: Specifies the code module that contains the cryptographic functionality used in
this document with the following a ttributes:

Á Id: "{05F17A8A -189E -42CD -9B21 -E8F6B730EC8A}" specifies a unique identifier for the
encryption provider.

Á Url: "http://www.contoso.com/DownloadProvider/" specifies the URL for the location of the
EncryptionProvider code module.

EncryptionProviderData: Data for consumption by the extensible encryption module specified in the
EncryptionProvider node.

3.10 Office Binary Document RC4 Encryption

3.10.1 Encryption Header

This sec tion provides an example of an RC4 encryption header structure (section 2.3.6.1) used by

Office Binary Document RC4 Encryption (section 2.3.6) to specify the encryption properties for an
encrypted stream.

00001200: 01 00 01 00 C4 DC 85 69 91 13 EC 1C F1 E5 29 06

00001210: 0E 49 00 B3 F3 53 BB 80 36 63 CD E3 DD F2 D1 CB

00001220: 10 23 9B 5A 39 8F EA C2 43 EC F4 4B 9A 62 29 1B

00001230: 1A 4C 9D CD

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionVersionInfo

Salt (16 bytes)

...

...

EncryptedVerifier (16 bytes)

...

...

EncryptedVerifierHash (16 bytes)

...

...

EncryptionVersionInfo (4 bytes): A value specifying that Version.vMajor is 0x0001 and
Version.vMinor is 0x0001.

89 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Salt (16 bytes): "C4 DC 85 69 91 13 EC 1C F1 E5 29 06 0E 49 00 B3" specifies a randomly
generated value that is used when generating the encryption key.

EncryptedVerifier (16 b ytes): "F3 53 BB 80 36 63 CD E3 DD F2 D1 CB 10 23 9B 5A" specifies that
the verifier is encrypted using a 40 -bit RC4 cipher initialized as specified in section 2.3.6.2 , with a

block number of 0x00 000000.

EncryptedVerifierHash (16 bytes): "39 8F EA C2 43 EC F4 4B 9A 62 29 1B 1A 4C 9D CD" specifies
an MD5 hash of the verifier used to create the EncryptedVerifier field.

3.11 PasswordKeyEncryptor (Agile Encryption)

 00000000: 04 00 04 00 40 00 00 00 3C 3F 78 6D 6C 20 76 65

 00000010: 72 73 69 6F 6E 3D 22 31 2E 30 22 20 65 6E 63 6F

 00000020: 64 69 6E 67 3D 22 55 54 46 2D 38 22 20 73 74 61

 00000030: 6E 64 61 6C 6F 6E 65 3D 22 79 65 73 22 3F 3E 0D

 00000040: 0A 3C 65 6E 63 72 79 70 74 69 6F 6E 20 78 6D 6C

 00000050: 6E 73 3D 22 68 74 74 70 3A 2F 2F 73 63 68 65 6D

 00000060: 61 73 2E 6D 69 63 72 6F 73 6F 66 74 2E 63 6F 6D

 00000070: 2F 6F 66 66 69 63 65 2F 32 30 30 36 2F 65 6E 63

 00000080: 72 79 70 74 69 6F 6E 22 20 78 6D 6C 6E 73 3A 70

 00000090: 3D 22 68 74 74 70 3A 2F 2F 73 63 68 65 6D 61 73

 000000A0: 2E 6D 69 63 72 6F 73 6F 66 74 2E 63 6F 6D 2F 6F

 000000B0: 66 66 69 63 65 2F 32 30 30 36 2F 6B 65 79 45 6E

 000000C0: 63 72 79 70 74 6F 72 2F 70 61 73 73 77 6F 72 64

 000000D0: 22 3E 3C 6B 65 79 44 61 74 61 20 73 61 6C 74 53

 000000E0: 69 7A 65 3D 22 31 36 22 20 62 6C 6F 63 6B 53 69

 000000F0: 7A 65 3D 22 31 36 22 20 6B 65 79 42 69 74 73 3D

 00000100: 22 31 32 38 22 20 68 61 73 68 53 69 7A 65 3D 22

 00000110: 32 30 22 20 63 69 70 68 65 72 41 6C 67 6F 72 69

 00000120: 74 68 6D 3D 22 41 45 53 22 20 63 69 70 68 65 72

 00000130: 43 68 61 69 6E 69 6E 67 3D 22 43 68 61 69 6E 69

 00000140: 6E 67 4D 6F 64 65 43 42 43 22 20 68 61 73 68 41

 00000150: 6C 67 6F 72 69 74 68 6D 3D 22 53 48 41 31 22 20

 00000160: 73 61 6C 74 56 61 6C 75 65 3D 22 2F 61 34 69 57

 00000170: 71 50 79 49 76 45 32 63 55 6F 6C 4A 4D 4B 72 49

 00000180: 77 3D 3D 22 2F 3E 3C 64 61 74 61 49 6E 74 65 67

 00000190: 72 69 74 79 20 65 6E 63 72 79 70 74 65 64 48 6D

 000001A0: 61 63 4B 65 79 3D 22 75 77 70 41 45 46 57 31 68

 000001B0: 51 79 44 32 4F 30 31 6B 7A 31 6C 68 6A 65 76 4 E

 000001C0: 77 30 45 43 79 41 41 30 75 32 4F 78 44 79 67 73

 000001D0: 66 59 3D 22 20 65 6E 63 72 79 70 74 65 64 48 6D

 000001E0: 61 63 56 61 6C 75 65 3D 22 75 66 36 48 62 4A 6A

 000001F0: 74 72 79 4A 4F 6A 53 46 71 72 6B 71 6B 4E 51 59

 00000200: 39 4E 6A 4E 51 55 50 49 2B 78 63 6B 38 51 38 79

 00000210: 34 6D 6B 6F 3D 22 2F 3E 3C 6B 65 79 45 6E 63 72

 00000220: 79 70 74 6F 72 73 3E 3C 6B 65 79 45 6E 63 72 79

 00000230: 70 74 6F 72 20 75 72 69 3D 22 68 74 74 70 3A 2F

 00000240: 2F 73 63 68 65 6D 6 1 73 2E 6D 69 63 72 6F 73 6F

 00000250: 66 74 2E 63 6F 6D 2F 6F 66 66 69 63 65 2F 32 30

 00000260: 30 36 2F 6B 65 79 45 6E 63 72 79 70 74 6F 72 2F

 00000270: 70 61 73 73 77 6F 72 64 22 3E 3C 70 3A 65 6E 63

 00000280: 72 79 70 74 65 64 4B 65 79 20 73 7 0 69 6E 43 6F

 00000290: 75 6E 74 3D 22 31 30 30 30 30 30 22 20 73 61 6C

 000002A0: 74 53 69 7A 65 3D 22 31 36 22 20 62 6C 6F 63 6B

 000002B0: 53 69 7A 65 3D 22 31 36 22 20 6B 65 79 42 69 74

 000002C0: 73 3D 22 31 32 38 22 20 68 61 73 68 53 69 7A 65

 000002D0: 3D 22 32 30 22 20 63 69 70 68 65 72 41 6C 67 6F

 000002E0: 72 69 74 68 6D 3D 22 41 45 53 22 20 63 69 70 68

 000002F0: 65 72 43 68 61 69 6E 69 6E 67 3D 22 43 68 61 69

 00000300: 6E 69 6E 67 4D 6F 64 65 43 42 43 22 20 68 61 73

 00000310: 68 41 6C 67 6F 72 69 74 68 6D 3D 22 53 48 41 31

 00000320: 22 20 73 61 6C 74 56 61 6C 75 65 3D 22 70 70 73

 00000330: 36 42 31 62 6D 71 43 46 58 67 6F 70 73 6D 31 72

 00000340: 57 6E 51 3D 3D 22 20 65 6E 63 72 79 70 74 65 64

 00000350: 56 65 72 69 66 69 65 7 2 48 61 73 68 49 6E 70 75

 00000360: 74 3D 22 4A 59 55 34 51 30 75 32 42 68 71 7A 51

90 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 00000370: 41 35 44 34 4A 2F 76 6F 41 3D 3D 22 20 65 6E 63

 00000380: 72 79 70 74 65 64 56 65 72 69 66 69 65 72 48 61

 00000390: 73 68 56 61 6C 75 65 3D 22 65 42 32 6A 58 35 6D

 000003A0: 76 68 42 4A 2B 39 4F 37 66 66 43 2B 36 58 32 4D

 000003B0: 79 64 7A 32 67 6C 48 4F 58 78 30 54 39 50 6E 36

 000003C0: 6E 4B 2B 77 3D 22 20 65 6E 63 72 79 70 74 65 64

 000003D0: 4B 65 79 56 61 6C 75 65 3D 22 32 46 38 36 48 47

 0000 03E0: 2B 78 56 33 6E 47 61 32 37 44 45 6C 67 71 67 77

 000003F0: 3D 3D 22 2F 3E 3C 2F 6B 65 79 45 6E 63 72 79 70

 00000400: 74 6F 72 3E 3C 2F 6B 65 79 45 6E 63 72 79 70 74

 00000410: 6F 72 73 3E 3C 2F 65 6E 63 72 79 70 74 69 6F 6E

 00000420: 3E

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

EncryptionVersionInfo.vMajor EncryptionVersionInfo.vMinor

Reserved

XmlEncryptionDescriptor (variable)

...

EncryptionVersionInfo.vMajor (2 bytes): 0x0004 specifies the major version.

EncryptionVersionInfo.vMinor (2 bytes): 0x0004 specifies the minor version.

Reserved (4 bytes): 0x00000040 is a reserved value.

XmlEncryptionDescriptor (variable): An XML block that specifies the encryption algorithms used
and that contains the following X ML:

 <?xml version="1.0" encoding="UTF - 8" standalone="yes"?>

 <encryption

 xmlns="http://schemas.microsoft.com/office/2006/encryption"

 xmlns:p="http://schemas.microsoft.com/office/2006/keyEncryptor/password">

 <keyData

 saltSize="16"

 bloc kSize="16"

 keyBits="128"

 hashSize="20"

 cipherAlgorithm="AES"

 cipherChaining="ChainingModeCBC"

 hashAlgorithm="SHA - 1"

 saltValue="/a4iWqPyIvE2cUolJMKrIw=="/>

 <dataIntegrity

 encryptedHmacKey="uwpAEFW1hQyD2O01kz1lhjevNw0ECyAA0u2OxDygsfY="

 encryptedHmacValue="uf6HbJjtryJOjSFqrkqkNQY9NjNQUPI+xck8Q8y4mko="/>

 <keyEncryptors>

 <keyEncryptor uri="http://schemas.microsoft.com/office/2006/keyEncryptor/password">

 <p:encryptedKey

 spinCount="100000"

 saltSize="16"

 blockSize="16"

 keyBits="128"

 hashSize="20"

 cipherAlgorithm="AES"

 cipherChaining="ChainingModeCBC"

91 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

 hashAlgorithm="SHA - 1"

 saltValue="pps6B1bmqCFXgopsm1rWnQ=="

 encryptedVerifierHashInput="JYU4Q0u2BhqzQA5D4J/voA=="

 encryptedVerifierHashValue="eB2jX5mvhBJ+9O7ffC+6X2Mydz2glHOXx0T9Pn6nK+w="

 encryptedKeyValue="2F86HG+xV3nGa27DElgqgw=="/>

 </keyEncryptor>

 </keyEncryptors>

 </encryption>

keyData: The cryptographic attributes used to encrypt the data.

saltSize: 16 specifies that the salt value is 16 bytes in length.

blockSize: 16 specifies that 16 bytes were used to encrypt each block of data.

keyBits: 128 specifies that the key used to encrypt the data is 128 bits in length.

hashSize: 20 specifies that the hash size is 20 bytes in length.

cipherAlgorithm: "AES" specifies that the cipher algorithm used to encrypt the data is AES.

cipherChaining: "ChainingModeCBC" specifies that the chaining mode to encrypt the data is CBC.

hashAlgorithm: "SHA -1" specifies that the hashing algorithm used to hash the data is SHA -1.

SaltValue: "/a4 iWqPyIvE2cUolJMKrIw==" specifies a randomly generated value used when

generating the encryption key.

dataIntegrity: Specifies the encrypted copies of the salt and hash values used to help ensure that
the integrity of the encrypted data has not been compro mised.

encryptedHmacKey : "uwpAEFW1hQyD2O01kz1lhjevNw0ECyAA0u2OxDygsfY=" specifies the
encrypted copy of the randomly generated value used when generating the encryption key.

encryptedHmacValue : "uf6HbJjtryJOjSFqrkqkNQY9NjNQUPI+xck8Q8y4mko=" specifies the

encrypted copy of the hash value that is generated during the creation of the encryption key.

keyEncryptors: Specifies the key encryptors used to encrypt the data.

keyEncryptor: "http://schemas.microsoft.com/office/2006/keyEncryptor/password" specifies that the
schema used by this encryptor is the schema specified in section 2.3.4.10 for password -based
encryptors.

p:encryptedKey: The attributes used to generate the encrypting key.

spinCount: 100000 specifies that there are 100000 iterations on the hash of the password.

saltSize: 16 specifies that the salt value is 16 bytes long.

blockSize: 16 specifies that 16 bytes were used to encrypt each block of data.

keyBits: 128 specifies that the key is 128 b its in length.

hashSize: 20 specifies that the hash is 20 bytes in length.

cipherAlgorithm: "AES" specifies that the cipher used to encrypt the data is AES.

cipherChaining: "ChainingModeCBC" specifies that the chaining mode used for encrypting is CBC.

hash Algorithm: "SHA -1" specifies that the hashing algorithm used is SHA -1.

92 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

saltValue: "pps6B1bmqCFXgopsm1rWnQ==" specifies the randomly generated value used for
encrypting the data.

encryptedVerifierHashInput: "JYU4Q0u2BhqzQA5D4J/voA==" specifies the VerifierH ashInput
attribute encoded as specified in section 2.3.4.13 .

encryptedVerifierHashValue: "eB2jX5mvhBJ+9O7ffC+6X2Mydz2glHOXx0T9Pn6nK+w=" specifies
the VerifierHashValue encoded as specified in section 2.3.4.13.

encryptedKeyValue: "2F86HG+xV3nGa27DElgqgw==" specifies the KeyValue encoded as specified
in section 2.3.4.13.

93 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

4 Security

4.1 Security Considerations for Implementers

4.1.1 Data Spaces

None.

4.1.2 Information Rights Management

It is recommended that software components that implement the Information Rights Management
(IRM) Data Space make a best effort to respect the licensing limitations applied to the protected
content in the document.

Security considerations concerning rights management are as described in [MS -RMPR].

4.1.3 Encryption

4.1.3.1 ECMA -376 Document Encryption

ECMA-376 document encryption [ECMA -376] using standard encryption does not support CBC and
does not have a provision for detecti ng corruption, although a block cipher (specifically, AES) is not
known to be subject to bit - flipping attacks. ECMA -376 documents using agile encryption are required
to use CBC and corruption detection, and are not subject to the issues noted for standard encryption.

When setting algorithms for agile encryption, the SHA -2 series of hashing algorithms is preferred.
MD2, MD4, and MD5 are not recommended. Older cipher algorithms, such as DES, are also not

recommended.

Passwords are limited to 255 Unicode code points.

4.1.3.2 Office Binary Document RC4 CryptoAPI Encryption

The Office binary document RC4 CryptoAPI encryption method is not recommended and ought to be

used only when backward compatibility is required.

Passwords are limited to 255 Unic ode characters.

Office binary document RC4 CryptoAPI encryption has the following known cryptographic weaknesses:

Á The key derivation algorithm described in section 2.3.5.2 is weak because of the l ack of a
repeated iteration mechanism, and the password might be subject to rapid brute - force attacks.

Á Encryption begins with the first byte and does not throw away an initial range as is recommended

to overcome a known weakness in the RC4 pseudorandom num ber generator.

Á No provision is made for detecting corruption within the encryption stream, which exposes
encrypted data to bit - flipping attacks.

Á When used with small key lengths (such as 40 -bit), brute - force attacks on the key without
knowing the password are possible.

Á Some streams are not encrypted.

Á Key stream reuse can occur in document data streams, potentially with known plaintext, implying

that certain portions of encrypted data can be either directly extracted or trivially retrieved.

%5bMS-RMPR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=200054

94 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Á Key stream reuse occurs multiple times within the RC4 CryptoAPI Encrypted Summary stream.

Á Document properties might not be encrypted, which could result in information leakage.

Because of the cryptographic weaknesses of the Office binary document RC4 CryptoAPI encryption, it
is considered insecure, and therefore is not recommended when storing sensitive materials.

4.1.3.3 Office Binary Document RC4 Encryption

The Office binary document RC4 encryption method is not recommended, and ought to be used only
when backward compatibility is requir ed.

Passwords are limited to 255 Unicode characters.

Office binary document RC4 encryption has the following known cryptographic weaknesses:

Á The key derivation algorithm is not an iterated hash, as described in [RFC2898] , which allows
brute - force attacks against the password to be performed rapidly.

Á Encryption begins with the first byte, and does not throw away an initial range as is recommended
to ov ercome a known weakness in the RC4 pseudorandom number generator.

Á No provision is made for detecting corruption within the encryption stream, which exposes

encrypted data to bit - flipping attacks.

Á While the derived encryption key is actually 128 bits, the i nput used to derive the key is fixed at
40 bits, and current hardware enables brute - force attacks on the encryption key without knowing
the password in a relatively short period of time so that even if the password cannot easily be
recovered, the informati on could still be disclosed.

Á Some streams might not be encrypted.

Á Depending on the application, key stream reuse could occur, potentially with known plaintext,

implying that certain portions of encrypted data could be either directly extracted or easily

re trieved.

Á Document properties might not be encrypted, which could result in information leakage.

Because of the cryptographic weaknesses of the Office Binary Document RC4 Encryption, it is
considered easily reversible and therefore is not recommended when s toring sensitive materials.

4.1.3.4 XOR Obfuscation

XOR obfuscation is not recomme nded. Document data can easily be extracted. The document
password could be retrievable.

Passwords are truncated to 15 characters. It is possible for multiple passwords to map to the same
key.

4.1.4 Document Write Protection

Document write protection methods 1 (section 2.4.2.1) and 3 (section 2.4.2.3) both embed the
password in plaintext into the file. Although method 3 subsequently encrypts the file, the encryption is
flawed, and the pas sword is described in section 2.4.2.3. In both cases, the password can be

extracted with little difficulty. Document write protection is not considered to be a security
mechanism, and the write protection can easily be removed by using a binary editor. Doc ument write
protection is meant to protect against accidental modification only.

http://go.microsoft.com/fwlink/?LinkId=119708

95 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Some file formats, such as those described in [MS -DOC] and [MS -XLS] , restrict password length to 15
characters. It is possible for multiple passwords to map to the same key when using document write

protection method 2 (section 2.4.2.2).

4.1.5 Binary Document Digital Signatures

Certain streams and storages are not subject to sig ning. Tampering with these streams or storages
does not invalidate the signature.

4.2 Index of Security Fields

None.

%5bMS-DOC%5d.pdf
%5bMS-XLS%5d.pdf

96 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

5 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs.

Á Microsoft Office 97

Á Microsoft Office 2000

Á Microsoft O ffice XP

Á Microsoft Office 2003

Á The 2007 Microsoft Office system

Á Microsoft Office 2010 suites

Á Microsoft Office 2013

Á Microsoft Office SharePoint Server 2007

Á Microsoft SharePoint Server 2010

Á Microsoft SharePoint Server 2013

Á Microsoft Office 2016

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number appears
with the product version, behavior changed in that service pack or QFE. The new behavior also applies
to subsequent service packs of the product unless otherwise speci fied. If a product edition appears
with the product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD or
SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product does not

follow the prescription.

<1> Section 2.2 : Applications in Offi ce 2003, the 2007 Microsoft Office system, Microsoft Office 2010
suites and Office 2013 versions encrypt the Microsoft Office binary documents by persisting the entire
document to a temporary OLE compound file and then transforming the physical representat ion of the
OLE compound file as a single stream of bytes. Similarly, ECMA -376 documents [ECMA -376] are

encrypted by adding the entire file package to a temporary file and then transforming th e physical
representation of the file as a single stream of bytes.

The following streams are also stored outside the protected content to preserve interoperability with
applications that do not understand the IRMDS structure:

Á _signatures

Á 0x01CompObj

Á Macros

Á _VBA_PROJECT_CUR

Á 0x05SummaryInformation

Á 0x05DocumentSummaryInformation

Á MsoDataStore

http://go.microsoft.com/fwlink/?LinkId=200054

97 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Applications in Office 2003, the 2007 Office system, Office 2010 and Office 2013 also create the
streams and storages necessary to create a default document within the OL E compound file. This

default document contains a short message to the user indicating that the actual document contents
are encrypted. This allows versions of Microsoft Office that do not understand the IRMDS structure to

open the default document instead of rejecting the file.

<2> Section 2.2.1 : Office 2003, the 2007 Office system, Office 2010 and Office 2013 offer the user
the option of creating a transformed MHTML representation of the document when applying a rights
management policy to a document. This option is on by default in Microsoft Office Excel 2003 and off
by default in all other applications in Office 2003, and it is off by default in all applications in the 2007
Office system, Office 2010 and Office 2013. If the transformed MHTML representation is created, the
0x09LZXDRMDataSpace data space definition is applied to it (which includes both LZX compression

and encryption).

<3> Section 2.2.2 : Office 2003, the 20 07 Office system, Office 2010 and Office 2013 offer the user
the option of creating a transformed MHTML representation of the document when applying a rights
management policy to a document. This option is on by default in Office Excel 2003 and off by defa ult
in all other Office 2003 applications, and it is off by default in all applications in the 2007 Office system

and newer versions. If the transformed MHTML representation is created, the

0x09LZXDRMDataSpace data space definition is applied to it (which includes both LZX compression
and encryption).

<4> Section 2.2.3 : Office 2003, the 2007 Office system, Office 2010 and Office 2013 offer the user
the option of creating a transformed MHTML representation of the do cument when applying a rights
management policy to a document. This option is on by default in Office Excel 2003 and off by default
in all other Office 2003 applications, and it is off by default in all applications in the 2007 Office
system, Office 2010 a nd Office 2013. If the transformed MHTML representation is created, the

0x09LZXDRMDataSpace data space definition is applied to it (which includes both LZX compression
and encryption).

<5> Section 2.2.6 : Office SharePoint Server 2007 uses the AUTHENTICATEDDATA element with
the name set to "ListGUID" as the application -specific GUID that identifies the storage location for the
document. This is stored encrypted within the element as follows.

 <AUTHENTICATEDDATA id="Encrypted - Rights - Data">

Once decrypted, the XrML document contains an element named AUTHENTICATEDDATA , containing
an attribute named id with a value of "APPSPECIFIC" and an attribute named name with a value of
ListGUID with the contents of the List GUID.

<6> Section 2.2.11 : Office 2003, the 2007 Office system, Office 2010 and Office 2013 offer the user
the option of creating a transformed MHTML representation of the document when applying a rights

management policy to a document. This option is on by default in Office Excel 2003 and off by default
in all other Office 2003 applications, and it is off by default in all applications in the 2007 Office
system, Office 2010 and Office 2013. If the transformed MHTML representation is created, the
0x09LZXDRMDataSpace data space definition is applied to it (which includes both LZX compression
and encryption).

<7> Section 2.3.1 : In the 2007 Office system, the 2007 Office system , Office 2010 and Office 2013,

the default encryption algorithm for ECMA -376 standard encryption documents [ECMA -376] is 128 -bit
AES, and both 192 -bit and 256 -bit AES are also supported. It is possible to use alternate encryption
algorithms, and for best r esults, a block cipher supporting ECB mode is recommended. Additionally,
the algorithm ought to convert one block of plaintext to one block of encrypted data, where both
blocks are the same size. This information is for guidance only, and it is possible th at if alternate
algorithms are used, the applications in the 2007 Office system, Office 2010 and Office 2013 might
not open the document properly or that information leakage could occur.

98 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

<8> Section 2.3.2 : Several of the cryptographic techniques specified in this document use the
Cryptographic Application Programming Interface (CAPI) or CryptoAPI when implemented by Microsoft

Office on the Microsoft Windows operating systems. While an implementation is not required to use
CryptoAPI, if an implementation is required to interoperate with the 2007 Office system, the 2007

Office system, Office 2010 and Office 2013 on the Windows XP operating system, Windows Vista
operating system, Windows 7 operating system, Windows 8 o perating system and Windows 8.1
operating systems, the following are required:

Cryptographic service provider (CSP): A library containing implementations of cryptographic
algorithms. Several CSPs that support the algorithms required in this specification a re present by
default on Windows XP, Windows Vista, Windows 7, Windows 8 and Windows 8.1 operating systems.
Alternate CSPs can be used, if the CSP is installed on all systems consuming or producing a document.

AlgID: An integer representing an encryption a lgorithm in the CryptoAPI. Required AlgID values are
specified in the remainder of this document. Alternate AlgID values can be used if the CSP supporting
the alternate AlgID is installed on all systems consuming or producing a document.

AlgIDHash: An inte ger representing a hashing algorithm in the CryptoAPI. Required AlgIDHash

values are specified in the remainder of this document. For encryption operations, the hashing
algorithm is fixed and cannot vary from the algorithms specified.

The following cryptographic providers are recommended to facilitate interoperability across all
supported versions of Windows:

Á Microsoft Base Cryptographic Provider v1.0

Á Microsoft Enhanced Cryptographic Provider v1.0

Á Microsoft Enhanced RSA and AES Cryptogr aphic Provider

Note that the following providers are equivalent:

Á Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)

Á Microsoft Enhanced RSA and AES Cryptographic Provider

The provider listed as "Microsoft Enhanced RSA and AES Cryptographic Pr ovider (Prototype)" is found
on Windows XP. An implementation needs to treat these providers as equivalent when attempting to
resolve a CSP on a Windows system.

When using AES encryption for ECMA -376 documents [ECMA -376], the Microsoft Enhanced RSA and
AES Cryptographic Provider is written into the header, unless AES encryption facilities are obtained
from an alternate cryptographic provider as noted in the next paragraph. When using CryptoAPI RC4

encryption, be aware that the Microsoft Base Cryptographic Provider v1.0 is limited to 56 -bit key
lengths. The other providers listed support up to 128 -bit key lengths.

Other cryptographic providers can be used, but documents specifying other providers will not open
properly if the cryptographic provider is not pr esent. On a non -Windows system, the cryptographic
provider will be ignored when opening a file, and the algorithm and key length will be determined by
the EncryptionHeader.AlgID and EncryptionHeader.KeySize fields. When writing a file from a

non -Windows sy stem, a correct cryptographic provider needs to be supplied for implementations on

Windows systems to properly open the file.

Additionally, a ProviderType parameter is required for an EncryptionHeader structure that is
compatible with the CSP and encryptio n algorithm chosen. To facilitate interoperability, the
ProviderTypes listed in section 2.3.2 are recommended.

Additionally, see section 4.1.3 for additional information regarding the cryptography used.

<9> Section 2.3.4.5 : Office 2003 applications set a Version.vMajor version value of 0x0002.

Applications in the 2007 Office system and Microsoft Office 2007 Service Pack 1 (SP1) set a

99 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

Version.vMajor value of 0x0003. Versions Microsoft Office 2007 Service Pack 2 (SP2), Office 2010
and Office 2013 set a Version.vMajor value of 0x0004.

<10> Section 2.3.4.5 : In the 2007 Office system, Office 2010 and Office 2013, the default encryption
algorithm for ECMA -376 standard encryption documents [ECMA -376] is 128 -bit AES, and both 192 -bit

and 256 -bit AES are also supported. It is possible to use alternate encryption a lgorithms, and for best
results, a block cipher supporting ECB mode is recommended. Additionally, the algorithm ought to
convert one block of plaintext to one block of encrypted data, where both blocks are the same size.
This information is for guidance on ly, and it is possible that if alternate algorithms are used, the
applications in the 2007 Office system, Office 2010 and Office 2013 might not open the document
properly or that information leakage could occur.

< 11> Section 2.3.4.5 : In the 2007 Office system, Office 2010 and Office 2013, the default encryption

algorithm for ECMA -376 standard encryption documents [ECMA -376] is 128 -bit AES, and both 192 -bit
and 256 -bit AES are also supported. It is possible to use alternate encryption algorithms, and for best
results, a block cipher supporting ECB mode is recommended. Additionally, the algorithm ought to
convert one block of plaintext to one block of encrypted data, where both blocks are the same size.
This informat ion is for guidance only, and it is possible that if alternate algorithms are used, the

applications in the 2007 Office system, Office 2010 and Office 2013 might not open the document

properly or that information leakage could occur.

<12> Section 2.3.4.6 : On Windows XP, Windows Vista, Windows 7, Windows 8 and Windows 8.1,
CSPName specifies the GUID of the extensible encryption module used for this file format. This GUID
specifies the CLSID of the COM module containing cryptographic functionality. The CSPName is
required to be a null - terminated Unicode string.

<13> Section 2.3.4.10 : The use of RC2 is not recomme nded. If RC2 is used with a key length of less
than 128 bits, documents could interoperate incorrectly across different operating system versions.

<14> Section 2.3.4.10 : The use of DES is not recommended. If DES is used, the key length specified
in the KeyBits element is required to be set to 64 for 56 -bit encryption, and the key decrypted from
encryptedKeyValue of KeyEncryptor is required to include the DES parity bits.

<15> Section 2.3.4.10 : The use of DESX is not recommended. If DESX is used, documents could

interoperate incorrectly across different operating system versions.

<16> Section 2.3.4.10 : If 3DES or 3DES_112 is used , the key length specified in the KeyBits
element is required to be set to 192 for 168 -bit encryption and 128 for 112 -bit encryption, and the

key decrypted from encryptedKeyValue of KeyEncryptor is required to include the DES parity bits.

<17> Section 2.3.4.10 : If 3DES or 3DES_112 is used, the key length specified in the KeyBits
element is required to be set to 192 for 168 -bit encryption and 128 for 112 -bit encryption, and the
key decrypted from encryptedKeyValue of KeyEncryptor is required to include the DES parity bits.

<18> Section 2.3.4.10 : Any algorithm that can be resolved by name by the underlying operating
system can be used for hashing or encryption. Only block algorithms are supported for encryption.

AES-128 is the default encryption algorithm, and SHA -1 is the default hashing algorith m if no other
algorithms have been configured.

<19> Section 2.3.4.10 : Any algorithm that can be resolved by name by the underlying operating

system can be used for hashing or encryption. Only block algorithms are supported for encryption.
AES-128 is the default encryption algorithm, and SHA -1 is the default hashing algorithm if no other
algorithms have been configured.

<20> Section 2.3.4.10 : All ECMA -376 documents [ECMA -376] encrypted by Microsoft Office using

agile encryption will have a DataIntegrity element present. The schema allows for a DataIntegrity
element to not be present because the encryption schema can be used by applications that do not
create ECMA -376 docum ents [ECMA -376].

100 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

<21> Section 2.3.5.1 : Office 2003 applications set a Version.vMajor version of 0x0002.
Applications in the 2007 Office system and Office 2007 SP1 set a Version.vMajor value of 0x0003.

Versions s uch as Office 2007 SP2, Office 2010 and Office 2013set a Version.vMajor value of 0x004.

<22> Section 2.3.5.1 : Several of the cryptographic techniques specified in this document use the

Cryptographic Application P rogramming Interface (CAPI) or CryptoAPI when implemented by Microsoft
Office on the Windows operating systems. While an implementation is not required to use CryptoAPI,
if an implementation is required to interoperate with Microsoft Office on the Windows operating
systems, the following are required:

Cryptographic service provider (CSP): A CSP refers to a library containing implementations of
cryptographic algorithms. Several CSPs that support the algorithms required in this specification are
present by de fault on the latest versions of Windows. Alternate CSPs can be used, if the CSP is

installed on all systems consuming or producing a document.

AlgID: An integer representing an encryption algorithm in the CryptoAPI. Required AlgID values are
specified in t he remainder of this document. Alternate AlgIDs can be used if the CSP supporting the
alternate AlgID is installed on all systems consuming or producing a document.

AlgIDHash: An integer representing a hashing algorithm in the CryptoAPI. Required AlgIDHash
values are specified in the remainder of this document. For encryption operations, the hashing

algorithm is fixed and cannot vary from the algorithms specified.

The following cryptographic providers are recommended to facilitate interoperability across al l
supported versions of Windows:

Á Microsoft Base Cryptographic Provider v1.0

Á Microsoft Enhanced Cryptographic Provider v1.0

Á Microsoft Enhanced RSA and AES Cryptographic Provider

Note that the following providers are equivalent:

Á Microsoft Enhanced RSA and AE S Cryptographic Provider (Prototype)

Á Microsoft Enhanced RSA and AES Cryptographic Provider

The provider listed as "Microsoft Enhanced RSA and AES Cryptographic Provider (Prototype)" is found
on Windows XP. An implementation needs to treat these providers a s equivalent when attempting to
resolve a CSP on a Windows system.

When using AES encryption for ECMA -376 documents [ECMA -376], the Microsoft Enhanced RSA and
AES Cryptographic Provider is written into the header, unless AES encryption facilities are obta ined

from an alternate cryptographic provider as noted in the next paragraph. When using CryptoAPI RC4
encryption, be aware that the Microsoft Base Cryptographic Provider v1.0 is limited to 56 -bit key
lengths. The other providers listed support up to 128 -bit key lengths.

Other cryptographic providers can be used, but documents specifying other providers might not open
properly if the cryptographic provider is not present. On a non -Windows system, the cryptographic
provider will be ignored when opening a fil e, and the algorithm and key length will be determined by

the EncryptionHeader.AlgID and EncryptionHeader.KeySize fields. When writing a file from a
non -Windows system, a correct cryptographic provider needs to be supplied for implementations on
Windows sy stems to properly open the file.

Additionally, a ProviderType parameter is required for an EncryptionHeader structure that is
compatible with the CSP and encryption algorithm chosen. To facilitate interoperability, the
ProviderTypes listed in section 2.3.2 are recommended.

Additionally, see section 4.1.3 for additional information regarding the cryptography used.

101 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

<23> Section 2.3.5.4 : Office 2003, the 2007 Office system, Office 2010 and Office 2013 allow the
user to optionally encrypt the \ 0x05SummaryInformation and

\ 0x05DocumentSummaryInformation streams. Additional streams and storages can also be
encrypted within the RC4 CryptoAPI summary stream.

<24> Se ction 2.4.1 : Documents generated by Microsoft Office Excel 2007, Microsoft Excel2010 and
Microsoft Excel 2013 can be encrypted as specified in section 2.3 with the following password:
" \ x56 \ x65 \ x6C\ x76 \ x65 \ x74 \ x53 \ x77 \ x65 \ x61 \ x74 \ x73 \ x68 \ x6F \ x70". The conditions under which
this password is used are described in [MS -XLS] and [MS -XLSB] .

<25> Section 2.4.2.2 : Documents generated by Office Excel 2007, Excel 2010 and Excel 2013 can be
encrypted as specified in section 2.3 with the following password:
" \ x56 \ x65 \ x6C \ x76 \ x65 \ x74 \ x53 \ x77 \ x65 \ x61 \ x74 \ x73 \ x68 \ x6F \ x70". The conditions under which

this password is used are described in [MS -XLS] and [MS -XLSB].

<26> Section 2.4.2.3 : Documents created by Microsoft Office PowerPoint 2003, Microsoft Office
PowerPoint 2007 and Microsoft Office PowerPoint 2007 Service Pack 1 use the default password.
Microsoft Office PowerPoint 2007 Service Pack 2 does not use the default password. A document

created without the default password can be opened in earlier versions. Due to security concerns, it is
preferable not to use the default password.

<27> Section 2.4.2.4 : Any algorithm that can be resolved by name by the underlying operating
system can be used for hashing or encryption. Only block algorithms are supported for encryption.
AES-128 is the default encryption algorithm, and SHA -1 is the default hashing algorithm if no other
algorithms have been configured.

<28> Section 2.5.2.1 : In the 2007 Office system, the SHA -1 hashing algorithm is r equired to be used
for this purpose. Office 2010 and Office 2013 require only that the underlying operating system
support the hashing algorithm.

<29> Section 2.5.2.1 : In the 2007 Office system, the SHA -1 hashing algorithm is required to be used
for this purpose. Office 2010 and Office 2013 require only that the underlying operating system
support the hashing algorithm.

<30> Section 2.5.2.4 : In the 2007 Office system, th e SHA -1 hashing algorithm is required to be used
for this purpose. Office 2010 and Office 2013 versions require only that the underlying operating
system support the hashing algorithm.

<31> Section 2.5.2.5 : Offic e 2010, Office 2013 and the 2007 Office system reserve the value of

{00000000 -0000 -0000 -0000 -000000000000} for their default signature providers and {000CD6A4 -
0000 -0000 -C000 -000000000046} for their East Asian signature providers.

<32> Section 2.5.2.6 : Office 2010 and Office 2013 adds XML Advanced Electronic Signatures
([XAdES]) extensions to xmldsig signatures when configured to do so by the user. By default, XAdES -
EPES signatures are used, as specified in [XAdES] section 4.4.2.

<33> Section 2.5.2.6 : By default, Office 2010 and Office 2013 places the reference to the

SignedProperties element within the Signe dInfo element. the 2007 Office system needs an update
to correctly validate a reference within the SignedInfo element that is not to a top - level Object
element, and incorrectly rejects these signatures as invalid. To ensure compatibility with earlier

versi ons of Office that have not been updated to validate the signature correctly, an implementation
can place the Reference element within a manifest.

%5bMS-XLS%5d.pdf
%5bMS-XLSB%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=151586

102 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

6 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

103 / 107

[MS -OFFCRYPTO] - v20150904
Office Document Cryptography Structure
Copyright © 2015 Microsoft Corporation
Release: September 4, 2015

7 Index

\

\ _signatures stream 68
\ 0x06DataSp aces \ DataSpaceInfo storage ï

encryption 36
\ 0x06DataSpaces \ DataSpaceInfo storage ï IRMDS

27
\ 0x06DataSpaces \ DataSpaceMap stream ï

encryption 36
\ 0x06DataSpaces \ DataSpaceMap str eam ï IRMDS

26
\ 0x06DataSpaces \ TransformInfo storage ï

encryption 36
\ 0x06DataSpaces \ TransformInfo storage for ECMA -

376 documents ï IRMDS 28
\ 0x06DataSpaces \ TransformInfo storage for Office

binary documents ï IRMDS 27
\ EncryptedPackage stream ï encryption 37
\ EncryptionInfo stream (agile encryption) ï

encryption 42
\ EncryptionInfo stream (extensible encryption) ï

encryption 38
\ EncryptionInfo stream (standard encryption) ï

encryption 37
\ EncryptionInfo Stream (Third -Party Extensible

Encryption) example 87
\ EncryptionInfo Stream example 85

_

_xmlsignatures storage 75

0

0x06Primary Stream example 79

4

40 -bit RC4 encryption overview 15

A

Applicability overview
 data spaces 17
 encryption 18

Array overview 17

B

Binary document digital signatures
 \ _signatures stream 68
 _xmlsignatures storage 75
 CryptoAPI digital signature CertificateInfo structure

66
 CryptoAPI digital signature generation 68
 CryptoAPI digital signature structure 68
 idOfficeObject object element 71
 idPackageObject object element 71
 KeyInfo element 71
 security
 imple menter considerations 95
 SignatureValue element 70

 SignedInfo element 70
 TimeEncoding structure 65
 XAdES elements 74
 Xmldsig digital signature elements 70
Binary document digital signatures structure 65
Binary document password verifier derivation Method

1 ï encryption 58
Binary document password verifier derivation Method

2 ï encryption 61
Binary document write protection Method 1 63
Binary document write protection Method 2 63
Binary document write protection Method 3 64
Binary document XOR array initialization Method 1 ï

encryption 58
Binary document XOR array initialization Method 2 ï

encryption 62
Binary document XOR data transformation Method 1

ï encryption 60
Binary document XOR data transformation Method 2

ï encryption 63
Byte ordering
 overview 16

C

Certificate chain example 82
Change tracking 102
CryptoAPI digital signature CertificateInfo structu re

66
CryptoAPI digital signature generation 68
CryptoAPI digital signature structure 68
CryptoAPI RC4 encryption overview 15

D

Data encryption (agile encryption) ï encryption 50
Data spaces
 applicability 17
 DataSpaceDefinition structure 24
 DataSpaceMap structure 22
 DataSpaceMapEntry structure 23
 DataSpaceReferenceComponent structure 23
 DataSpaceVersionInfo structure 21
 EncryptionTransformInfo structure 25
 File 19
 Length -Prefixed Padded Unicode String (UNICODE -

LP-P4) structure 20
 Length -Prefixed UTF -8 String (UTF -8-LP-P4)

structure 21
 overview 12
 security
 implementer considerations 93
 TransformInfoHeader structure 25
 version structure 21
Data spaces structure 19
DataIntegrity generation (agile encryption) ï

encryption 50
DataSpaceDefinition structure ï data spaces 24
DataSpaceMap Stream example 77
DataSpaceMap structure ï data spaces 22
DataSpaceMapEntry structure ï data spaces 23
DataSpaceMapEntry structure example 78

