
1 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

[MS - DOC]:

Word (.doc) Binary File Format

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation (ñthis
documentationò) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter -protocol relationships and interactions.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your i mplementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.
Á Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
thi s documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promi se or the Microsoft Community Promise . If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Commun ity Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com .

Á License Programs . To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map .

Á Trademarks . The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under t hose rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, email
addresses, logos, people, place s, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require the use of Microsoft programming
tool s or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjuncti on with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com .

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Revision Summary

Date
Revision
History

Revision
Class Comments

6/27/2008 1.0 New First release

1/16/2009 1.01 Minor Updated IP Notice

7/13/2009 1.02 Major Changes made for template compliance

8/28/2009 1.03 Editorial Revised and edited the technical content

11/6/2009 1.04 Editorial Revised and edited the technical content

2/19/2010 2.0 Editorial Revised and edited the technical content

3/31/2010 2.01 Editorial Revised and edited the technical content

4/30/2010 2.02 Editorial Revised and edited the technical content

6/7/2010 2.03 Major Updated and revised the technical content

6/29/2010 2.04 Editorial Changed language and formatting in the technical content.

7/23/2010 2.04 None
No changes to the meaning, language, or formatting of the
technical content.

9/27/2010 2.05 Editorial Changed language and formatting in the technical content.

11/15/2010 2.05 None
No changes to the meaning, language, or formatting of the
technical content.

12/17/2010 2.05 None
No changes to the meaning, language, or formatting of the
technical content.

3/18/2011 2.05 None
No changes to the meaning, language, or formatting of the
technical content.

6/10/2011 2.05 None
No changes to the meaning, language, or formatting of the
technical content.

1/20/2012 3.0 Major Significantly changed the technical content.

4/11/2012 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/16/2012 3.1 Minor Clarified the meaning of the technical content.

10/8/2012 3.2 Minor Clarified the meaning of the technical content.

2/11/2013 3.3 Minor Clarified the meanin g of the technical content.

7/30/2013 3.3 None
No changes to the meaning, language, or formatting of the
technical content.

11/18/2013 3.3 None
No changes to the meaning, language, or formatting of the
technical content.

2/10/2014 3.3 None
No changes to the meaning, language, or formatting of the
technical content.

4/30/2014 3.4 Minor Clarified the meaning of the technical content.

7/31/2014 4.0 Major Significantly changed the technical content.

3 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Date
Revision
History

Revision
Class Comments

10/30/2014 4.1 Minor Clarified the meaning of the technical content.

3/16/2015 5.0 Major Significantly changed the technical content.

9/4/2015 6.0 Major Significantly changed the technical content.

7/15/2016 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/14/2016 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/29/2016 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

10/17/2016 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

1/12/2017 6.1 Minor Clarified the meaning of the technical content.

4/27/2018 7.0 Major Significantly changed the technical content.

8/28/2018 8.0 Major Significantly changed the technical content.

12/11/2018 8.1 Minor Clarified the meaning of the technical content.

3/19/2019 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

11/19/2019 8.1 None
No changes to the meaning, language, or formatting of the
technical content.

2/16/2021 8.2 Minor Clarified the meaning of the technical content.

4/22/2021 9.0 Major Significantly changed the technical content.

8/17/2021 10.0 Major Significantly changed the technical content.

11/16/2021 10.0 None
No changes to the meaning, language, or formatting of the
technical content.

4 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Table of Contents

1 Introduction 14
1.1 Glossary 14
1.2 References 23

1.2.1 Normative References 23
1.2.2 Informative References 24

1.3 Overview 24
1.3.1 Characters 24
1.3.2 PLCs 25
1.3.3 Formatting 25
1.3.4 Tables 25
1.3.5 Pictures 25
1.3.6 The FIB 26
1.3.7 Byte Ordering 26
1.3.8 General Organization of This Documentation 26

1.4 Relationship to Protocols and Other Structures 27
1.5 Applicability Statement 27
1.6 Versioning and Localization 27
1.7 Vendor -Extensible Fields 27

2 Structures 28
2.1 File Structure 28

2.1.1 WordDocument Stream 28
2.1.2 1Table Stream or 0Table St ream 28
2.1.3 Data Stream 28
2.1.4 ObjectPool Storage 28

2.1.4.1 ObjInfo Stream 28
2.1.4.2 Print Stream 29
2.1.4.3 EPrint Stream 29

2.1.5 Custom XML Data Storage 29
2.1.6 Summary Information Stream 29
2.1.7 Document Summary Information Stream 29
2.1.8 Encryption Stream 29
2.1.9 Macros Storage 29
2.1.10 XML Signatures Storage 30
2.1.11 Signatures Stream 30
2.1.12 Information Rights Manage ment Data Space Storage 30
2.1.13 Protected Content Stream 30

2.2 Fundamental Concepts 30
2.2.1 Character Position (CP) 30
2.2.2 PLC 30
2.2.3 Valid Selection 31
2.2.4 STTB 32
2.2.5 Property Storage 33

2.2.5.1 Sprm 33
2.2.5.2 Prl 34

2.2.6 Encryption and Obfuscation (Password to Open) 34
2.2.6.1 XOR Obfuscation 35
2.2.6.2 Office Binary Document RC4 Encryption 35
2.2.6.3 Office Binary Document RC4 CryptoAPI Encryption 35

2.3 Document Parts 36
2.3.1 Main Document 36
2.3.2 Footnotes 36
2.3.3 Headers 36
2.3.4 Comments 37
2.3.5 Endnotes 38

5 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2.3.6 Textboxes 38
2.3.7 Header Textboxes 38

2.4 Document Content 38
2.4.1 Retrieving Text 39
2.4.2 Determining Paragraph Boundaries 39
2.4.3 Overview of Tables 40
2.4.4 Determining Cell Boundaries 43
2.4.5 Determining Row Bo undaries 44
2.4.6 Applying Properties 45

2.4.6.1 Direct Paragraph Formatting 45
2.4.6.2 Direct Character Formatting 45
2.4.6.3 Determining List Formatting of a Paragraph 46
2.4.6.4 Determining Level Number of a Paragraph 47
2.4.6.5 Determining Properties of a Style 48
2.4.6.6 Determining Formatting Properties 49

2.4.7 Application Data For VtHyperlink 51
2.5 The File Infor mation Block 52

2.5.1 Fib 52
2.5.2 FibBase 54
2.5.3 FibRgW97 56
2.5.4 FibRgLw97 57
2.5.5 FibRgFcLcb 59
2.5.6 FibRgFcLcb97 59
2.5.7 FibRgFcLcb2000 79
2.5.8 FibRgFcLcb2002 82
2.5.9 FibRgFcLcb2003 89
2.5.10 FibRgFcLcb2007 96
2.5.11 FibRgCswNew 99
2.5.12 FibRgCswNewData2000 100
2.5.13 FibRgCswNewData2007 100
2.5.14 Determining the nFib 100
2.5.15 How to read the FIB 101

2.6 Single Property Modifiers 101
2.6.1 Character Properties 102
2.6.2 Paragraph Properties 117
2.6.3 Table Properties 128
2.6.4 Section Properties 137
2.6.5 Picture Properties 145

2.7 Document Properties 145
2.7.1 Dop 145
2.7.2 DopBase 146
2.7.3 Dop95 152
2.7.4 Dop97 153
2.7.5 Dop2000 156
2.7.6 Dop2002 160
2.7.7 Dop2003 163
2.7.8 Dop2007 165
2.7.9 Dop2010 167
2.7.10 Dop2013 167
2.7.11 Copts60 168
2.7.12 Copts80 169
2.7.13 Copts 170
2.7.14 Asumyi 173
2.7.15 Dogrid 174
2.7.16 DopTypography 175
2.7.17 DopMth 177

2.8 PLCs 179
2.8.1 Plcbkf 179

6 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2.8.2 Plcbkfd 180
2.8.3 Plcbkl 181
2.8.4 Plcbkld 181
2.8.5 PlcBteChpx 182
2.8.6 PlcBtePapx 182
2.8.7 PlcfandRef 183
2.8.8 PlcfandTxt 183
2.8.9 PlcfAsumy 184
2.8.1 0 Plcfbkf 184
2.8.11 Plcfbkfd 185
2.8.12 Plcfbkl 186
2.8.13 Plcfbkld 186
2.8.14 Plcfcookie 186
2.8.15 PlcfcookieOld 187
2.8.1 6 PlcfendRef 187
2.8.17 PlcfendTxt 188
2.8.18 Plcffactoid 188
2.8.19 PlcffndRef 189
2.8.20 PlcffndTxt 189
2.8.21 Plcfgram 190
2.8.22 Plcfhdd 190
2.8.23 PlcfHdrtxbxTxt 191
2.8.24 Plcflad 191
2.8.25 Plcfld 192
2.8.26 PlcfSed 193
2.8.27 PlcfSpa 193
2.8.28 Plcfspl 194
2.8.29 PlcfTch 194
2.8.30 PlcfTxbxBkd 195
2.8.31 PlcfTxbxHdrBkd 196
2.8.32 PlcftxbxTxt 196
2.8.33 Plcfuim 197
2.8 .34 PlcfWKB 197
2.8.35 PlcPcd 198

2.9 Basic Types 199
2.9.1 Acd 199
2.9.2 Afd 200
2.9.3 ASUMY 201
2.9.4 ATNBE 201
2.9.5 AtrdExtra 201
2.9.6 ATRDPost10 202
2.9.7 ATRDPre10 202
2.9.8 BKC 203
2.9.9 BKF 204
2.9.10 BKFD 204
2.9.11 BKL 205
2.9.12 BKLD 205
2.9.13 BlockSel 206
2.9.14 Bool16 206
2.9.15 Bool8 206
2.9.16 Brc 206
2.9.17 Brc80 207
2.9.18 Brc80MayBeNil 207
2.9.19 BrcCvOperand 207
2.9.20 BrcMayBeNil 208
2.9.21 BrcOperand 208
2.9.22 BrcType 208
2.9.23 BxPap 215

7 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2.9.24 CAPI 215
2.9.25 CDB 216
2.9.26 CellHideMarkOperand 217
2.9.27 CellRangeFitText 217
2.9.28 CellRangeNoWrap 217
2.9.29 CellRangeTextFlow 218
2.9.30 CellRangeVertAlign 218
2.9.31 CFitTextOperand 218
2.9.32 Chpx 219
2.9.33 ChpxFkp 219
2.9.34 Cid................................ 220
2.9.35 CidAllocated 220
2.9.36 CidFci 220
2.9.37 CidMacro 223
2.9.38 Clx 224
2.9.39 CMajorityOperand 224
2.9.40 Cmt 224
2.9.41 CNFOperand 225
2.9.42 CNS 225
2.9.43 COLORREF 226
2.9.44 COSL 226
2.9.45 CSSA 227
2.9.46 CSSAOperand 227
2.9.47 CSymbolOperand 228
2.9.48 CTB 228
2.9.49 CTBWRAPPER 230
2.9.50 Customization 230
2.9.51 DCS 231
2.9.52 Def TableShd80Operand 232
2.9.53 DefTableShdOperand 232
2.9.54 DispFldRmOperand 232
2.9.55 Dofr 233
2.9.56 DofrFsn 233
2.9.57 DofrFsnFnm 234
2.9.58 DofrFsnName 235
2.9.59 DofrFsnp 235
2.9.60 DofrFsnSpbd 235
2.9.61 Dofrh 236
2.9.62 DofrRglstsf 236
2.9.63 Dofrt 237
2.9.64 DPCID 237
2.9.65 DTTM 238
2.9.66 FACTOIDINFO 239
2.9.67 FactoidSpls 239
2.9.68 FarEastLayoutOperand 239
2.9.69 Fatl 240
2.9.70 FBKF 241
2.9.71 FBKFD 241
2.9.72 FBKLD 241
2.9.73 FcCompressed 242
2.9.74 FCCT 243
2.9.75 Fci 244
2.9.76 FCKS 312
2.9.77 FCKSOLD 313
2.9.78 FFData 314
2.9.79 FFDataBits 316
2.9.80 FFID 317
2.9.81 FFM 318

8 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2.9.82 FFN 318
2.9.83 FieldMapBase 320
2.9.84 FieldMapDataItem 320
2.9.85 FieldMapInfo 321
2.9.86 FieldMapTerminator 322
2.9.87 FilterDataItem 322
2.9.88 Fld 323
2.9.89 fldch 323
2.9.90 flt 323
2.9.91 FNFB 326
2.9.92 FNIF................................ 327
2.9.93 FNPI 327
2.9.94 FOBJH 328
2.9.95 FrameTextFlowOperand 328
2.9.96 FSDAP 329
2.9.97 Fsnk 329
2.9.98 Fssd 329
2.9.99 FssUnits 330
2.9.100 FTO 330
2.9.101 Fts 330
2.9.102 FtsWWidth_Indent 331
2.9.103 FtsWWidth_Table 331
2.9.104 FtsWWidth_TablePart 332
2.9.105 FTXBXNonReusable 332
2.9.106 FTXBXS 333
2.9.107 FTXBXSReusable 334
2.9.108 GOSL 334
2.9.109 GrammarSpls 335
2.9.110 grffldEnd 335
2.9.111 grfhic 336
2.9.112 GRFSTD................................ 337
2.9.113 GrLPUpxSw 338
2.9.114 GrpPrlAndIstd 338
2.9.115 HFD 338
2.9.116 HFDBits 339
2.9.117 Hplxsdr 339
2.9.118 HresiOperand 340
2.9.119 Ico 340
2.9.120 IDPCI 341
2.9.121 Ipat 342
2.9.122 IScrollType 346
2.9.123 ItcFirstLim 346
2.9.124 Kcm 346
2.9.125 Kme 347
2.9.126 Kt 347
2.9.127 Kul 348
2.9.128 LadSpls 348
2.9.129 LBCOperand 349
2.9.130 LEGOXTR_V11 349
2.9.131 LFO 350
2.9.132 LFOData 351
2.9.133 LFOLVL 351
2.9.134 LID 352
2.9.135 LPStd 352
2.9.136 LPStshi 352
2.9.137 LPStshiGrpPrl 352
2.9.138 LPUpxChpx 353
2.9.139 LPUpxChpxRM 353

9 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2.9.140 LPUpxPapx 353
2.9.141 LPUpxPapxRM 354
2.9.142 LPUpxRm 354
2.9.143 LPUpxTapx 354
2.9.144 LPXCharBuffer9 355
2.9.145 LSD 355
2.9.146 LSPD 356
2.9.147 LSTF 356
2.9.148 Lstsf 357
2.9.149 LVL 357
2.9.150 LVLF 358
2.9.151 MacroName 360
2.9.152 MacroNames 361
2.9.153 MathPrOperand 361
2.9.154 Mcd 361
2.9.155 MDP 362
2.9.156 MFPF 362
2.9.157 NilBrc 363
2.9.158 NilPICFAndBinData 363
2.9.159 NumRM 364
2.9.160 NumRMOperand 366
2.9.161 OcxInfo 366
2.9.162 ODSOPropertyBase 367
2.9 .163 ODSOPropertyLarge 369
2.9.164 ODSOPropertyStandard 369
2.9.165 ODT 369
2.9.166 ODTPersist1 370
2.9.167 ODTPersist2 371
2.9.168 OfficeArtClientAnchor 372
2.9.169 OfficeArtClientData 372
2.9.170 OfficeArtClientTextbox 372
2.9.171 OfficeArtContent 373
2.9.172 OfficeArtWordDrawing 373
2.9.173 PANOSE 374
2.9.174 PapxFkp 378
2.9.175 PapxInFkp 379
2.9.176 PbiGrfOperand 379
2.9.177 Pcd 380
2.9.178 Pcdt 380
2.9.179 PChgTabsAdd 381
2.9.180 PChgTabsDel 381
2.9.181 PChgTabsDelClose 381
2.9.182 PChgTabsOperand 382
2.9.183 PChgTabsPapxOperand 383
2.9.184 PgbApplyTo 383
2.9.185 PgbOffsetFrom 383
2.9.186 PgbPageDepth 383
2.9.187 PGPArray 384
2.9.188 PGPInfo 384
2.9.189 PGPOptions 385
2.9.190 PICF 386
2.9.191 PICF_Shape 387
2.9.192 PICFAndOfficeArtData 387
2.9.193 PICMID 388
2.9.194 PlcfGlsy 390
2.9.195 PlfAcd 390
2.9.196 PlfCosl 390
2.9.197 PlfGosl 391

10 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2.9.198 PlfguidUim 391
2.9.199 PlfKme 392
2.9.200 PlfLfo 392
2.9.201 PlfLst 392
2.9.202 PlfMcd 393
2.9.203 PLRSID 393
2.9.204 Pmfs 394
2.9.205 Pms 396
2.9.206 PnFkpChpx 398
2.9.207 PnFkpPapx 398
2.9.208 PositionCodeOperand 398
2.9.209 Prc 399
2.9.210 PrcData 399
2.9.211 PrDrvr 399
2.9.212 PrEnvLand 400
2.9.213 PrEnvPort 400
2.9.214 Prm 400
2.9.215 Prm0 400
2.9.216 Prm1 402
2.9.217 PropRMark 402
2.9.218 PropRMarkOperand 403
2.9.219 ProtectionType 403
2.9.220 PRTI 403
2.9.221 PTIstdInfoOperand 404
2.9.222 Rca 404
2.9.223 RecipientBase 405
2.9.224 RecipientDataItem 405
2.9.225 RecipientInfo 406
2.9.226 RecipientTerminator 407
2.9.227 Rfs 407
2.9.228 RgCdb 408
2.9.229 RgxOcxInfo 408
2.9.230 RmdThreading 409
2.9.231 Rnc 413
2.9.232 RouteSlip 414
2.9.233 RouteSlipInfo 415
2.9.234 RouteSlipProtectionEnum 416
2.9.235 SBkcOperand 416
2.9.236 SBOrientationOperand 416
2.9.237 SClmOperand 416
2.9.238 SDmBinOperand 417
2.9.239 SDTI 417
2.9.240 SDTT 418
2.9.241 SDxa ColSpacingOperand 418
2.9.242 SDxaColWidthOperand 418
2.9.243 Sed 419
2.9.244 Selsf 419
2.9.245 Sepx 421
2.9.246 SFpcOperand 422
2.9.247 Shd 422
2.9.248 Shd80 423
2.9.249 SHDOperand 424
2.9.250 SLncOperand 424
2.9.251 SmartTagData 424
2.9.252 SortColumnAndDirection 425
2.9.253 Spa 425
2.9.254 SpellingSpls 427
2.9.255 SPgbPropOperand 428

11 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2.9.256 SPLS 428
2.9.257 SPPOperand 429
2.9.258 STD 429
2.9.259 Stdf 430
2.9.260 StdfBase 430
2.9.261 StdfPost2000 432
2.9.262 StdfPost2000OrNone 433
2.9.263 StkCharGRLPUPX 433
2.9.264 StkCharLPUpxGrLPUpxRM 434
2.9.265 StkCharUpxGrLPUpxRM 434
2.9.266 StkListGRLPUPX 434
2.9.267 StkParaGRLPUPX 435
2.9.268 StkParaLPUpxGrLPUpxRM 435
2.9.269 StkParaUpxGrLPUpxRM 436
2.9.270 StkTableGRLPUPX 436
2.9.271 STSH 437
2.9.272 STSHI 438
2.9.273 STSHIB 438
2.9.274 Stshif 439
2.9.275 StshiLsd 440
2.9.276 SttbfAssoc 440
2.9.277 SttbfAtnBkmk 441
2.9.278 SttbfAutoCaption 442
2.9.279 SttbfBkmk 443
2.9.280 Sttb fBkmkBPRepairs 447
2.9.281 SttbfBkmkFactoid 448
2.9.282 SttbfBkmkFcc 449
2.9.283 SttbfBkmkProt 450
2.9.284 SttbfBkmkSdt 451
2.9.285 SttbfCaption 452
2.9.286 SttbfFfn 453
2.9.287 SttbfGlsy 453
2.9.288 SttbFnm 454
2.9.289 SttbfRfs 455
2.9.290 SttbfRMark 456
2.9.291 SttbGlsyStyle 457
2.9.292 SttbListNames 458
2.9.293 SttbProtUser 458
2.9.294 SttbRgtplc 459
2.9.295 SttbSavedBy 460
2.9.296 SttbTtmbd 461
2.9.297 SttbW6 462
2.9.298 StwUser 462
2.9.299 Sty 463
2.9.300 TabJC 464
2.9.301 TabLC 464
2.9.302 TableBordersOperand 465
2.9.303 TableBordersOperand80 466
2.9.304 TableBrc80Operand 466
2.9.305 TableBrcOperand 467
2.9.306 TableCellWidthOperand 468
2.9.307 TableSel 468
2.9.308 TableShadeOperand 468
2.9.309 TBC 469
2.9.310 TBD 469
2.9.311 TBDelta 470
2.9.312 Tbkd 471
2.9.313 TC80 472

12 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2.9.314 TCellBrcTypeOperand 473
2.9.315 Tcg 473
2.9.316 Tcg255 474
2.9.317 TCGRF 474
2.9.318 TcgSttbf 475
2.9.319 TcgSttbfCore 475
2.9.320 Tch 476
2.9.321 TDefTableOperand 476
2.9.322 TDxaColOperand 477
2.9.323 TextFlow 477
2.9.324 TInsertOperand 478
2.9.3 25 TIQ 478
2.9.326 TLP 479
2.9.327 ToggleOperand 479
2.9.328 Tplc 480
2.9.329 TplcBuildIn 480
2.9.330 TplcUser 481
2.9.331 Ttmbd 481
2.9.332 UFEL 482
2.9.333 UID 483
2.9.334 UidSel 483
2.9.335 UIM 483
2.9.336 UpxChpx 484
2.9.337 UPXPadding 485
2.9.338 UpxPapx 485
2.9.339 UpxRm 486
2.9.340 UpxTapx 487
2.9.341 VerticalAlign 489
2.9.342 VerticalMergeFlag 489
2.9.343 VertMergeOperand 489
2.9.344 Vjc 490
2.9.345 WHeightAbs 490
2.9.346 WKB 490
2.9.347 Wpms 491
2.9.348 Wpmsdt 492
2.9.349 XAS 492
2.9.350 XAS_nonNeg 492
2.9.351 XAS_plusOne 492
2.9.352 XSDR 493
2.9.353 Xst 493
2.9.354 Xstz 494
2.9.355 YAS 494
2.9.356 YAS_nonNeg 494
2.9.357 YAS_plusOne 494

3 Structure Examples 495
3.1 Example of a Clx 495
3.2 Example of a section 500
3.3 Example of a Bookmark 505
3.4 Example of a PlcBteChpx 510
3.5 Example of a PlcBtePapx 514
3.6 Example of Table Row Properties 520
3.7 Example of a List 531

4 Security Considerations 542
4.1 Encryption and Obfuscation (Password to Open) 542
4.2 Write Reservation Password 542

5 Appendix A: Product Beha vior 543

13 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

6 Change Tracking 561

7 Index 562

14 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

1 Introduction

This document specifies the Word Binary File Format (.doc) Structure, which defines the Word Binary
File Format (.doc). The Word Binary File Format is a collection of records and structures that specify
text, tables, fields, pictures, embedded XML markup, and other docu ment content. The content can be
printed on pages of multiple sizes or displayed on a variety of devices.

The Word Binary File Format begins with a master record named the File Information Block, which

references all other data in the file. By following l inks from the File Information Block, an application
can locate all text and other objects in the file and compute the properties of those objects.

Sections 1.7 and 2 of this specification are normative. All other sections and examples in this
specificatio n are informative.

1.1 Glossary

This document uses the following terms:

accelerator key : Any combination of keys that are pressed simultaneously to run a command.

allocated command : A built - in command that requires the user to specify a value for a parameter
when customizing the command.

anchor : A set of qualifiers and quantifiers that specifies the location of an element or object within

a document. These values are typically relative to another element or known location in the
document, such as the edge of a page or margin.

annotation bookmark : An entity in a document that is used to denote the range of content to
which a comment applies.

ASCII : The American Standard Code for Information Interchange (ASCII) is an 8 -bit character -
encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8 -bit

ASCII character or an array of 8 -bit ASCII characters with the high bit of each character set to
zero.

Augmented Backus - Naur Form (ABNF) : A modified version of Backus -Naur Form (BNF),
commonly used by Internet specifications. ABNF notation bal ances compactness and simplicity
with reasonable representational power. ABNF differs from standard BNF in its definitions and
uses of naming rules, repetition, alternatives, order - independence, and value ranges. For more

information, see [RFC5234] .

auto spacing : A condition in which space is inserted automatically before and after a series of
consecutive paragraphs that do not have breaks or other items between them.

AutoCaption : A feature t hat adds a caption to an object automatically when the object is inserted
in a document.

AutoCorrect : A feature that corrects errors and makes other substitutions in a document

automatically by using default and user -defined settings.

auto - hyphenated : A condition of content where the distance between the text is measured and
maintained to force breaks automatically in elongated words that would not otherwise end
correctly on a line.

automark file : A file that stores the text, location, and index level of a set of characters that were
marked for inclusion in a document index.

https://go.microsoft.com/fwlink/?LinkId=123096

15 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

AutoSummary : A process in which key points are identified in selected text by analyzing
document content. A score is assigne d to each sentence; sentences that contain frequently used

words are given a higher score.

AutoText : A storage location for text and graphics, such as a standard contract clause, that can be

used multiple times in one or more documents. Each selection of t ext or graphics is recorded as
an AutoText entry and assigned a unique name.

bar tab : A tab that specifies where to draw a vertical line or bar in a paragraph. It neither affects
the position of characters nor creates a custom tab stop in a paragraph.

bidi rectional compatibility : The ability to display and process text in two directions, right - to - left
and left - to - right.

big - endian : Multiple -byte values that are byte -ordered with the most significant byte stored in the

memory location with the lowest address .

bookmark : An entity that is used in a document to denote the beginning and ending character

positions of specific text in the document, and optionally, metadata about that text or its
relationship to other referenced parts of the document.

caption : One or more characters that can be used as a label for display purposes or as an
identifier.

cascading style sheet (CSS) : An extension to HTML that enables authors and users of HTML
documents to att ach style sheets to those documents, as described in [CSS -LEVEL1] and [CSS -
LEVEL2] . A style sheet includes typographical info rmation about the appearance of a page,
including the font for text on the page.

cell : A box that is formed by the intersection of a row and a column in a worksheet or a table. A
cell can contain numbers, strings, and formulas, and various formats can be a pplied to that
data.

cell margin : A measurement of the distance between the border of a cell and the nearest pixel in

a character or digit of data in the cell. There are top, bottom, right, and left margins. See also
cell spacing .

cell spacing : A measurement of the distance between the cells of a table or worksheet. Most
tables and worksheets are implemented with contiguous cells, in which case the cell spacing
value is 0 (zero). See also cell margin .

CGAPI : An API that is implemented by grammar checkers that have been licensed to Microsoft

Corporation by external vendors.

chapter numbering : A page numbering format in which pages are numbered relative to the
beginning of a chapter within a document instead of the beginning of the document. The chapter
number is typically included in a page number; for example "3 ï 2," where "3" is the chapter
number and "2" is the number of that page within that chapter.

character pitch : A quality that measures the number of characters that can be printed in a

horizontal inch. Pitch is typically used to measure monospace fonts.

character set : A mapping between the characters of a written language and the values that are
used to represent those characters to a computer.

character unit : A horizontal unit of measurement that is relative to the document grid and is used
to position content in a d ocument.

class identifier (CLSID) : A GUID that identifies a software component; for instance, a DCOM
object class or a COM class.

https://go.microsoft.com/fwlink/?LinkId=99527
https://go.microsoft.com/fwlink/?LinkId=114090
https://go.microsoft.com/fwlink/?LinkId=114090

16 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

code page : An ordered set of characters of a specific script in which a numerical index (code -point
value) is associated with each character. Code pages are a means of providing support for

character sets and keyboard layouts used in different countries. Devices such as the display
and keyboard can be configured to use a specific code page and to switch from one code page

(such as the United States) to another (such as Portugal) at the user's request.

Component Object Model (COM) : An object -oriented programming model that defines how
objects interact within a single pro cess or between processes. In COM , clients have access to an
object through interfaces implemented on the object. For more information, see [MS -DCOM] .

connection string : A series of arguments, delimited by a semicolon, that defines the location of a
database and how to connect to it.

custom toolbar : A type of toolbar that contains a user -defined set of controls and is not included

in an application by default. A custom toolbar has a toolbar identifier value of "1".

custom toolbar control : A user -defined control that can be added to a toolbar. A custom toolbar
control has a toolbar control identifier (TCID) value of "1" and can be one of the following

types of controls: ActiveX, Button, ComboBox, DropDown, Edit, or Popup.

deletion point : A po sition between two existing characters, or a position before or after a
character, where text was removed. If a caret is positioned at a deletion point, the point can

retain unique formatting and that formatting can be reapplied to any text that is inserte d at the
deletion point.

digital signature : A value that is generated by using a digital signature algorithm, taking as input
a private key and an arbitrary - length string, such that a specific verification algorithm is
satisfied by the value, the input str ing, and the public key corresponding to the input private
key.

document : An object in a content database such as a file, folder, list, or site. Each object is

identified by a URI .

document grid : A feature that enables the precise layout of full -width East Asian language

characters by specifying the number of characters per line and the number of lines per page.

document template : A file that serves as the basis for new documents.

East Asian char acter : A character that is part of the Simplified Chinese, Traditional Chinese,
Japanese, or Korean character set .

East Asian language : A spoken or written communication that consists of words t hat are used

within the grammatical and syntactic structure of Simplified Chinese, Traditional Chinese,
Japanese, or Korean.

East Asian line breaking rules : A set of algorithms that define how text is parsed and displayed
to ensure that line breaks and wor d wraps follow the rules of various East Asian languages,
including Simplified Chinese, Traditional Chinese, Japanese, and Korean.

end of cell mark : A character with a hexadecimal value of "0x07" that is used to indicate the end

of a cell in a table.

end o f row mark : The combination of a character, hexadecimal value of "0x07", and a paragraph
property, sprmPFTtp, that is used to indicate the end of a row in a table.

endnote : A note that appears at the end of a section or document and that is referenced by text in
the main body of the document. An endnote consists of two linked parts, a reference mark
within the main body of text and the corresponding text of the note.

endnote continuation notice : A set of characters indicating that an endnote continues to the

next page. The default notice is blank.

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0

17 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

endnote continuation separator : A set of characters that indicates the end of document text on
a page and the beginning of endnotes that continue from the preceding page.

endnote separator : A set of characters that separates document text from endnotes about that
text. The default separator is a horizontal line.

field : An element or attribute in a data source that can contain data.

f ield type : A name that identifies the action or effect that a field has within a document. Examples
of field types are Author, Page, Comments, and Date.

file allocation table (FAT) : A data structure that the operating system creates when a volume is
format ted by using FAT or FAT32 file systems. The operating system stores information about
each file in the FAT so that it can retrieve t he file later.

footer : One or more lines of text in the bottom margin area of a page in a document or a slide in a

presentation. A footer typically contains elements such as the page number and the name of the
file.

footnote : A note that appears at the end of a page, section, chapter, or publication. It explains,
comments on, or provides references for text in the main body of a document. A footnote
consists of two linked parts, a reference mark within the main body of the document and the
corresponding tex t of the note.

footnote continuation notice : A set of characters indicating that a footnote continues to the next
page. The default notice is blank.

footnote continuation separator : A set of characters that indicates the end of document text on
a page and the beginning of footnotes that continue from the preceding page.

footnote separator : A set of characters that separates document text from footnotes about that
text. The default separator is a horizontal line.

form field : A data -entry area on a webpage, d ocument, or form.

format consistency checker : An application that applies a wavy blue underline to text where the
formatting is similar, but not identical, to comparable text in a document.

format consistency - checker bookmark : An entity in a document that is used to denote text
where the formatting is similar, but not identical, to comparable text in the document, and the
user indicated that the formatting inconsistency is not to be flagged.

frame : A space, displayed onscreen as a box, that contains a speci fic element of a publication.

full save : A process in which an existing file is overwritten with all of the additions, changes, and

other content in a document.

full screen view : A document view that expands the display of a document to fill the computer
screen. The view hides menus, toolbars, and taskbars.

grammar checker : An application that uses default or user -defined settings to search for

grammatical errors in a document.

gra mmar checker cookie : An entity in a document that a grammar checker uses to denote a

possible grammatical error in the document and data about that error.

gutter : An area above a column heading and to the left of a row heading. A gutter typically
displays outline symbols that are used to expand and collapse groups of cells.

gutter margin : A margin setting that adds extra space to the side or top margin of a document
that will be printed and bound. A gutter margin ensures that text is not obscured by the bin ding.

18 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Hangul - Hanja converter (HHC) : A collection of dictionaries that readers can use to search for
and select a Hanja word that corresponds to a specified Hangul word, or a Hangul word that

corresponds to a specified Hanja word.

header : A line, or lines, of content in the top margin area of a page in a document or a slide in a

presentation. A header typically contains elements such as the title of the chapter, the title of
the document, a page number, or the name of the author.

heading style : A type of pa ragraph style that also specifies a heading level. There are as many as
nine built - in heading styles, Heading 1 through Heading 9.

horizontal band : A set of rows in a table that are treated as a single unit, typically to ensure the
consistency of the layou t and the format.

HTML image map : An image that contains more than one hyperlink on a webpage. Clicking

various parts of the image links the user to other resources on another part of the page, a
different page, or a file.

hybrid list : A nine - level list th at is exposed in the user interface as a collection of nine, one - level
lists, instead of a single nine - level list.

Hyperlink view : A document view that displays a document as it would appear as a webpage.

Hypertext Markup Language (HTML) : An application of the Standard Generalized Markup

Language (SGML) that uses tags to mark elements in a document, as described in [HTML] .

incremental save : A process in which an existing file is modified to reflect only additions or
changes to a document, while maintaining all other existing content in the file.

Input Method Editor (IME) : An application that is used to enter characters in written Asian
languages by using a standard 101 -key keyb oard. An IME consists of both an engine that
converts keystrokes into phonetic and ideographic characters and a dictionary of commonly used
ideographic words.

insertion point : A position between two existing characters, or a position before or after a
char acter, where text can be inserted. If a caret is positioned at an insertion point, the point can
have unique formatting, which is applied to any text that is inserted at the insertion point.

kinsoku : A rule set in the Japanese language that is used to dete rmine characters that are not
permitted at the beginning or end of a line.

Kumimoji : A text layout setting that displays annotative characters inline next to the text to which
they apply. It is typically used with East Asian text to indicate pronunciation.

labels document : A document that stores label design and printing information in conjunction
with a mail merge document.

language auto - detection : A process that automatically determines the language code identifier
(LCID) for text in a document.

left - to - r ight : A reading order in which characters in words are read from left to right, and words
are read from left to right in sentences.

line numbers : A formatting property in which each line of text is prefixed with a sequential
number as part of a larger coll ection of lines on a page.

line unit : A vertical unit of measurement that is relative to the document grid and is used to
position content in a document.

list level : A condition of a paragraph that specifies which numbering system and indentation to
use, r elative to other paragraphs in a bulleted or numbered list.

https://go.microsoft.com/fwlink/?LinkId=89880

19 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

list tab : A tab stop that is between a list number or bullet and the text of that list item.

little - endian : Multiple -byte values that are byte -ordered with the least significant byte stored in
the memory location with the lowest address.

logical left : A position that is relative to the language orientation of a document. Logical left

means left, except in a right - to - left language where it means right. Also referred to as leading
edge.

logical right : A position that is relative to the language orientation of a document. Logical right
means right, except in a right - to - left language where it means left. Also referred to as trailing
edge.

macro : A set of instructions that are recorded or written, and th en typically saved to a file. When a
macro is run, all of the instructions are performed automatically.

mail merge : The process of merging information into a document from a data source, such as an
address book or database, to create customized documents, such as form letters or mailing

labels.

mail merge data source : A file or address book that contains the information to be merged into a
document during a mail merge operation.

mail merge header document : A file that contains the names of the fields in a m ail merge data

source.

mail merge main document : A document that contains the text and graphics that are the same
for each version of the merged document, such as the return address or salutation in a form
letter.

manifest : A file that stores metadata abou t an expansion pack, such as the name of the expansion
pack, the files and resources that are included in the expansion pack, and the dependencies that
it has on other files and components.

master document : A document that refers to or contains one or more other documents, which
are referred to as subdocuments. A master document can be used to configure and manage a
multipart document, such as a book with multiple chapters.

menu toolbar : A type of toolbar that is displayed in an application window, typicall y at the top,
and provides a set of menu controls from which the user can select. Activating a control on the
toolbar displays a list of commands in that menu, and the menu remains open until the user
closes it or chooses a menu command.

message identifier : A string that uniquely identifies an email message.

NLCheck : An API that is implemented by grammar checkers that were developed by Microsoft
Corporation.

Normal template : The default global t emplate that is used for any type of document. Users can
modify this template to change default document formatting, or content for any new document.

Normal view : A document view that displays text formatting and a simplified page layout of a

document. The Normal view hides some layout elements such as the header and footer.
Referred to as Draft view in Microsoft Office Word 2007 and Microsoft Word 2010.

NT file sys tem (NTFS) : A proprietary Microsoft file system. For more information, see [MSFT -
NTFS] .

number text : A string that is calculated automatically and represents the numbering scheme and
position of a paragraph in a bulleted or numbered list.

https://go.microsoft.com/fwlink/?LinkId=90200
https://go.microsoft.com/fwlink/?LinkId=90200

20 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Object Linking and Embedding (OLE) : A technology for transferring and sharing information
between applications by inserting a file or part of a file into a compound document. The inserted

file can be either e mbedded or linked. See also embedded object and linked object.

OLE compound file : A form of structured storage, as described in [MS -CFB] . A compound file

allows independent stora ges and streams to exist within a single file.

OLE control : A reusable software component that is designed to work in containers that support
Object Linking and Embedding (OLE) 2.0.

OLE object : An object that supports the Object Linking and Embedding (OLE) protocol.

outline level : A type of paragraph formatting that can be used to assign a hierarchical level, Level
1 through Level 9, t o paragraphs in a document. After outline levels are assigned, an outline of
a document can be viewed by using Outline view, the document map, or the navigation pane.

page border : A line that can be applied to the outer edge of a page in a document. A page border
can be formatted for style, color, and thickness.

paragraph mark : An entity in a document that is used to denote the end of a paragraph and has
a Unicode character code of 13.

paragraph style : A combination of character - and paragraph - formatting ch aracteristics that are
named and stored as a set. Users can select a paragraph and use a paragraph style to apply all

of the formatting characteristics to the paragraph simultaneously.

personal style : A list of formatting settings that is applied to a docu ment or an Internet message
when it is opened or created by a specific user on a specific computer. The settings are
associated with a user and a computer.

physical left : A leftward position that is not relative to the language orientation of document
cont ent. See also logical left .

physical right : A rightward position that is not relative to the language orientation of document

content. See also logical right .

point : A unit of measurement for fonts and spacing. A point is equal to 1/72 of an inch.

policy labels : A set of fields that stores metadata about a document and is defined by an
information management policy.

primary shortcut key : The default combination of keys that are pressed simultaneously to
execute a command. See also secondary shortcut key .

Print Preview view : A document view that displays a d ocument as it will appear on a printed

page.

ProgID : An identifier that is used by the Windows registry to uniquely identify an object and is in
the form OLEServerName.ObjectName, for example, "Excel.Sheet" or "PowerPoint.Slide."

property revision mark : A type of revision mark indicating that one or more formatting

properties, such as bold, indentation, or spacing, changed.

range - level protection : A mechanism that permits users to change only specific parts of a

protected document while restricting access to all other parts of the document. See also range -
level protection bookmark .

range - level protection bookmark : An entity in a document that is used to denote a range of
content that is an exception to a document - level protection setting.

%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b

21 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Reading Layout view : A document view that displays a document as it will appear on a printed
page and is optimized for reading a document on a computer screen. Two pages are displayed

simultaneously, side -by -side.

repair bookmark : An entity in a document that is used to denote text that was changed

automatically during a document repair operation.

rich tex t : Text that is formatted in the Rich Text Format, as described in [MSFT -RTF] .

Rich Text Format (RTF) : Text with formatting as described in [MSFT -RTF].

right - to - left : A reading and display o rder that is optimized for right - to - left languages.

Ruby : A text layout setting that displays annotative characters above or to the right of the text to
which it applies. It is typically used in East Asian documents to indicate pronunciation or to
provide a brief annotation.

ScreenTip : A small pop -up window that provides brief context -sensitive help when users point to

an item.

secondary shortcut key : A user -defined combination of keys that are pressed simultaneously to
execute a command. See also primary shortcut key .

section : A portion of a document that is terminated by a section break or the end of the
document. A section can store unique, page - level formatting, such as page size and orientati on,

and other formatting features such as headers and footers.

section break : A special character that terminates a section and acts as a repository for the
properties of the specified section.

shading pattern : A background color pattern against which char acters and graphics are displayed,
typically in tables. The color can be no color or it can be a specific color with a transparency or
pattern value.

smart tag : A feature that adds the ability to recognize and label specific data types, such as

people's na mes, within a document and displays an action button that enables users to perform
common tasks for that data type.

smart tag bookmark : An entity in a document that is used to denote the location and presence of
a smart tag.

smart tag recognizer : An add - in that can interpret a specific type of smart tag, such as an
address or a financial symbol, in a document and display an action button that enables users to
perform common tasks for that data type.

South Asian language : A spoken or written communication co nsisting of words that are used
within the grammatical and syntactic structure of a language of southern Asia, such as Hindi,
Urdu, or Tamil.

structured document tag : An entity in a document that is used to denote content that is stored

as XML data.

structured document tag bookmark : An entity in a document that is used to denote the location

and presence of a structured document tag .

style : A set of formatting options that is applied to text, tables, charts, and other objects in a
document.

subdocument : A document that can be referred to or inserted into another document.
Subdocuments can be referenced by master documents and other sub documents.

https://go.microsoft.com/fwlink/?LinkId=120924

22 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

table depth : An indicator that specifies how tables are nested and how to display paragraphs
within those tables. The depth is derived from values that are applied to paragraph marks, cell

marks, or table - terminating paragraph marks. A paragraph that is not in a table has a table
depth of "0" (zero); a nested table has a table depth of one greater than the cell that contains

it.

table style : A set of formatting options, such as font, border formatting, and row banding, that
are applied to a table . The regions of a table, such as the header row, header column, and data
area, can be variously formatted.

Tatenakayoko : A text layout setting that displays a range of text perpendicular (horizontal) to the
flow of other text (vertical).

toolbar : A row, column, or block of controls that represent tasks or commands within an

application. A toolbar can be either a menu toolbar, which provides access to menu commands,
or a basic toolbar, which contains buttons that provide shortcuts to tasks that are frequently
accessed from menus.

toolbar control : An object that appears on a toolbar and enables user interaction or input,
typically to initiate an action, display information, or set values.

toolbar control identifier (TCID) : An integer that identifies a specific control on a toolbar.

toolbar delta : A file component that stores a modification that a user made to a built - in toolbar.
Stored modifications include adding, changing, or removing a control from a built - in toolbar.

TrueType font : A type of comput er font that can be scaled to any size. TrueType fonts are clear
and readable in all sizes and can be sent to any printer or other output device.

twip : A unit of measurement that is used in typesetting and desktop publishing. It equals one -
twentieth of a p rinter's point, or 1/1440 of an inch.

Unicode : A character encoding standard developed by the Unicode Consortium that represents

almost all of the written languages of the world. The Unicode sta ndard [UNICODE5.0.0/2007]

provides three forms (UTF -8, UTF -16, and UTF -32) and seven schemes (UTF -8, UTF -16, UTF -16
BE, UTF-16 LE, UTF -32, UTF -32 LE, and UTF -32 BE).

Uniform Resource Identif ier (URI) : A string that identifies a resource. The URI is an addressing
mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI):
Generic Syntax [RFC3986] .

Universal Input Method (UIM) : An application or service that provides multilingual support and

delivers text services such as keyboard processors, handwriting recognition, and speech
recognition

Vector Markup Language (VML) : A system of marking up or ta gging two -dimensional vector
graphics for publication on the World Wide Web. VML graphics are scalable and editable, and
typically require less disk space and less time to download.

vertical band : A set of columns in a table that are treated as a single un it, typically for the

purpose of layout and formatting consistency.

virtual key code : A symbolic constant name, hexadecimal value, or mouse or keyboard equivalent
that provides a hardware - and language - independent method of identifying keyboard keys. Each
virtual key code represents a unique keyboard key and also identifies the purpose of that key.
The keyboard driver provides one or more keyboard layouts that maps keyboard scan codes to
the appropriate virtual key codes.

Visual Basic for Applications (VBA) : A macro -based programming language that derives from

Microsoft Visual Basic and can be used to customize and extend an application. Unlike Visual

https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90453

23 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Basic, Microsoft Visual Basic for Applications (VBA) code and macros can be run only from within
a host appl ication that supports VBA.

Warichu : A text layout setting that creates two sublines within a line and stacks text equally
between those sublines. One subline contains the text proper and the other subline contains

comments, notes, and annotations about tha t text.

Web Layout view : A view of a document as it might appear in a web browser. For example, the
document appears as only one page, without page breaks.

word wrap : The process of breaking lines of text automatically to stay within the page margins of
a document or window boundaries.

Word97 compatibility mode : An application mode that prevents users from applying formatting
and other document features and settings that are not supported in Microsoft Word 97 or earlier

versions of Word.

write - reservation p assword : A sequence of characters that need to be entered to modify a

document.

XML : The Extensible Markup Language, as described in [XML1.0] .

XML schema definition (XSD) : The World Wide Web Consortium (W3C) standard language that
is used in defining XML schemas. Schemas are useful for enforcing structure and constraining

the types of data that can be used validly within other XML documents. XML schema definition
refers to the fully specified and currently recommended standard for use in authoring XML
schemas.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119] . All statements of opt ional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the sect ion numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com . We will
assist yo u in finding the relevant information.

[ECMA -376] ECMA International, "Office Open XML File Formats", 1st Edition, ECMA -376, December
2006, http://www.ecma - international.org/publications/st andards/Ecma -376.htm

[Embed -Open -Type -Format] Nelson, P., "Embedded OpenType (EOT) File Format", W3C Member
Submission, March 2008, http://www.w3.org/Submission/2008/SUBM -EOT-20080305/

[MC -CPB] Microsoft Corporation, "Code Page Bitfields", http://msdn.microsoft.com/en -
us/library/dd317754.aspx

[MC -FONTSIGNATURE] Microsoft Corporation, "FONTSIGNATURE", http://msdn.microsoft.com/en -

us/library/dd318064.aspx

[MC -USB] Microsoft Corporation, "Unicode Subset Bitfields", http://msdn.microsoft.com/en -
us/ library/ms776439.aspx

https://go.microsoft.com/fwlink/?LinkId=90599
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=118624
https://go.microsoft.com/fwlink/?LinkId=206627
https://go.microsoft.com/fwlink/?LinkId=206627
https://go.microsoft.com/fwlink/?LinkId=115097
https://go.microsoft.com/fwlink/?LinkId=115097
https://go.microsoft.com/fwlink/?LinkId=115096
https://go.microsoft.com/fwlink/?LinkId=115096

24 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

[MS -CFB] Microsoft Corporation, " Compound File Binary File Format ".

[MS -CTDOC] Microsoft Corporation, " Word Custom Toolbar Binary File Format ".

[MS -DOCX] Microsoft Corporation, " Word Extensions to the Office Open XML (.docx) File Format ".

[MS -DTYP] Micr osoft Corporation, " Windows Data Types ".

[MS -EMF] Microsoft Corporation, " Enhanced Metafile Format ".

[MS -LCID] Microsoft Corporation, " Windows Language Code Identifier (LCID) Reference ".

[MS -ODRAW] Microsoft Corporation, " Office Drawing Binary File Format ".

[MS -OE376] Microsoft Corporation, " Office Implementation Infor mation for ECMA -376 Standards

Support ".

[MS -OFFCRYPTO] Microsoft Corporation, " Office Document Cryptography Structure ".

[MS -OLEPS] Microsoft Corporation, " Object Linking and Embedding (OLE) Property Set Data

Structures ".

[MS -OSHARED] Microsoft Corporation, " Office C ommon Data Types and Objects Structures ".

[MS -OVBA] Microsoft Corporation, " Office VBA File Format Structure ".

[MS -WMF] Microsoft Corporation, " Windows Metafile Format ".

[PANOSE] Hewlett -Packard Corporation, "PANOSE Classification Metrics Guide", February 1997,
http://www.panose.com

[RFC1 950] Deutsch, P., and Gailly, J -L., "ZLIB Compressed Data Format Specification version 3.3",
RFC 1950, May 1996, http://www.ietf.org/rfc/rfc1950.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

[RFC2822] Resnick, P., Ed., "Internet Message Format", RFC 2822, April 2001,

http://www.ietf.org/rfc/rfc2822.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.rfc -editor.org/rfc/rfc4234.txt

1.2.2 Informative References

[MS -OLEDS] Microsoft Corporation, " Object Linking and Embedding (OLE) Data Structures ".

[MSDN -FONTS] Microsoft Corporation, "About Fonts", http://msdn.microsoft.com/en -
us/library/dd162470(VS.85).aspx

1.3 Overview

1.3.1 Characters

The fundamental unit of a Word binary file is a character. This includes visual characters such as
letters, numbers, and punctuation. It also includes formatting characters such as paragraph marks ,
end of cell marks , line breaks, or section breaks . Finally, it includes anchor characters such as
footnote reference characters, picture anchors, and comment anchors.

%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
%5bMS-CTDOC%5d.pdf#Section_aff21c961b434bcf8c8a677e012c7e6a
%5bMS-DOCX%5d.pdf#Section_b839fe1fe1ca4fa68c265954d0abbccd
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-EMF%5d.pdf#Section_91c257d7c39d4a369b1f63e3f73d30ca
%5bMS-LCID%5d.pdf#Section_70feba9f294e491eb6eb56532684c37f
%5bMS-ODRAW%5d.pdf#Section_8560795e77594745838ff7f2ef2f1872
%5bMS-OE376%5d.pdf#Section_db9b9b72b10b4e7e844c09f88c972219
%5bMS-OE376%5d.pdf#Section_db9b9b72b10b4e7e844c09f88c972219
%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083
%5bMS-OLEPS%5d.pdf#Section_bf7aeae8c47a49399f45700158dac3bc
%5bMS-OLEPS%5d.pdf#Section_bf7aeae8c47a49399f45700158dac3bc
%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d
%5bMS-OVBA%5d.pdf#Section_575462babf6741909facc275523c75fc
%5bMS-WMF%5d.pdf#Section_4813e7fd52d04f42965f228c8b7488d2
https://go.microsoft.com/fwlink/?LinkId=115095
https://go.microsoft.com/fwlink/?LinkId=90301
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90385
https://go.microsoft.com/fwlink/?LinkId=90462
%5bMS-OLEDS%5d.pdf#Section_85583d21c1cf4afea35fd6701c5fbb6f
https://go.microsoft.com/fwlink/?LinkId=90008
https://go.microsoft.com/fwlink/?LinkId=90008

25 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Characters are indexed by their zero -based Character Position , or CP (section 2.2.1). This
documentation is generally concerned with CPs (section 2.2.1), not with the underlying text. Section

2.4.1 specifies an algorithm for determining the text at a particular CP (section 2.2.1), but this is just
one of many pieces of information an application might look for. The reader needs to understand that

this documentation is much more about logical characters in a document than about physical bytes in
a file .

1.3.2 PLCs

Many features of the Word Binary File Format pertain to a range of CPs (section 2.2.1). For example,
a bookmark is a range of CPs (section 2.2.1) that is named by the document author. As another
example, a field is made up of three control characters with ranges of arbitrary document content
between them.

The Word Binary File Format uses a PLC structure (se ction 2.2.2) to specify these and other kinds of
ranges of CPs (section 2.2.1). A PLC (section 2.2.2) is simply a mapping from CPs (section 2.2.1) to
other, arbitrary data.

1.3.3 Formatting

The formatting of characters, paragraphs, sections, tables, and pictures is specified as a set of
differences in formatting from the default formatting for these objects. Modifications to individual
properties are expressed using a Prl. A Prl is a Single Property Modifier, or Sprm , and an operand that

specifies the new value for the property. Each property has (at least) one unique Sprm that modifies
it. For example, sprmCFBold modifies the bold formatting of text, and sprmPDxaLeft modifies the
logical left indent of a paragraph.

The final set of properties for text, paragraphs, and tables comes from a h ierarchy of styles and from
Prl elements applied directly (for example, by the user selecting some text and clicking the Bold
button in the user interface). Styles allow complex sets of properties to be specified in a compact way.

They also allow the user to change the appearance of a document without visiting every place in the
document where a change is necessary. The style sheet for a document is specified by a STSH, as

defined in section 2.9.27 1.

See section 2.4.6.6 for the algorithm that determines the complete set of formatting for a character,
paragraph, table, or picture.

See section 2.8.26 for the structure used to determine the boundaries of sections and the location of
their properties.

See section 2.6 for the complete list of Sprms.

1.3.4 Tables

A table consists of a set of paragraphs that has a particular set of properties applied. There are special
characters that denote the ends of table cells and the ends of table rows, but ther e are no characters

to denote the beginning of a table cell or the end of the table as a whole. Tables can be nested inside
other tables.

Section 2.4.3 provides an overview of tables, and Sections 2.4.4 and 2.4.5 specify algorithms for
determining the boundaries of a table cell and table row, respectively.

1.3.5 Pictures

Pictures in the Word Binary File format can be either inline or floating. An inline picture is represented
by a character whose Unicode value is 0x0001 and has sprmCFSpec applied with a value of 1 and
sprmCPicLocation applied to specify the location of the picture data. A floating picture is represented

26 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

by an anch or character with a Unicode value of 0x0008 with sprmCFSpec applied with a value of 1. In
addition, floating pictures are referenced by a PlcfSpa structure which contains additional data about

the picture. A floating picture can appear anywhere on the same page as its anchor. The document
author can choose to have the floating picture rearrange the text in various ways or to leave the text

as is.

1.3.6 The FIB

The main stream of the Word Binary File Format begins with a File Information Block, or FIB . The FIB

specifies the locations of all other data in the file. The locations are specified by a pair of integers, the
first of which specifies the location and the second of which specifies the size. These integers appear in
substructures of the FIB such as the FibRgFcLcb97 . The location names are prefixed with fc ; the size
names are prefixed with lcb .

1.3.7 Byte Ordering

Some computer archite ctures number bytes in a binary word from left to right, which is referred to as
big - endian . The bit diagram for this documentation is big -endian. Other architectures number the
bytes in a binar y word from right to left, which is referred to as little - endian . The underlying file
format enumerations, objects, and records are little -endian.

Using big -endian and little -endian methods, the number 0x12345678 would be stored as shown in the
following table.

Byte order Byte 0 Byte 1 Byte 2 Byte 3

Big -endian 0x12 0x34 0x56 0x78

Little -endian 0x78 0x56 0x34 0x12

Unless otherwise specified, all data in the Word Binary File Format is stored in little -endian format.

1.3.8 General Organization of This Documentation

Section 2 of this documentation is arranged with high - level overviews followed by detailed

specifications.

Sections 2.1 through 2.4 provide general specifications of structures and concepts that recur in this
documentation. Read these sections from beginning to end before delving deeper into section 2. The
most important part of this documentation is section 2.4, which specifies algorithms for retrieving
document content and determining its properties.

Section 2.5 provides a complete specification of the FIB , including links to all referenced data
structures.

Section 2.6 provides a complete list of Sprm elements and their operands; it can be considered a
complete list of the character, paragraph, table, and section properties supported by the Word Binary

File Format. Note that most picture properties are not represented by Sprm elem ents. [MS -ODRAW]
specifies most picture properties. Each Sprm definition specifies the default value for the property that
it modifies.

Section 2.7 provides a specification of document - level properties

Section 2.8 provides a complete specification of all PLC types. Finally, section 2.9 provides
specifications for data types referenced by previous sections. Sections 2.8 and 2.9 are intended to be
read as the destination of links from other secti ons; they are not intended to be read straight through.

%5bMS-ODRAW%5d.pdf#Section_8560795e77594745838ff7f2ef2f1872

27 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Section 3 provides examples that relate to the algorithms in section 2.4 and examples of bookmarks
(1) and sections. These examples are intended to illustrate the concept of property storage, PLCs, an d

numbering, and to demonstrate the mapping between CP (section 2.2.1) and underlying text (as
specified in section 2.4.1).

Section 4 di scusses encryption, obfuscation, and other security issues relating to the Word Binary File
Format.

Section 5 is a list of version -specific behaviors. It is intended to be read in the context of specifications
in section 2, not as a stand -alone section. Sp ecifications in section 2 provide links to the relevant
items in section 5.

1.4 Relationship to Protocols and Other Structures

The Word Binary File Format is an OLE compound file as specified in [MS -CFB] . It is dependent on
the structures defined in the following references:

Á [MS -ODRAW] for the persistence format for shapes.
Á [MS -OVBA] for the persistence format for macros.

Á [MS -OFFCRYPTO] for the persistence format for document signing, information rights
management, document encryption, and obfuscation.

Á [MS -OSHARED] for the persistence format for additional common structures.

The Word Binary File Format is superseded by [ECMA -376] .

1.5 Applicability Statement

This document specifies a persistence format for word processing document content and templates,
which can include text, images, tables, custom XML schemas applied to the content, and page layout
information. This persistence format is applicable when the document cont ent is intended to flow
across a set of pages as necessary for a particular media, and when the document can be printed. This
persistence format is not applicable when exact reproduction of a specific representation of the

content across various media and devices is desired.

This persistence format is applicable for use as a stand -alone document, and for containment within
other documents as an embedded object as specified by [M S-OLEDS] .

This persistence format provides interoperability with applications that create or read documents
conforming to this structure.

1.6 Versioning and Localization

This document covers versioning issues in the fol lowing areas:

Structure Versions: There is only one version of the Word Binary File Format structure.

Localization: This structure defines no general locale -specific processes or data. Locale -specific
variations for specific field values within the structu re are specified in the definition of the affected

field in Section 2.

1.7 Vendor -Extensible Fields

This persistence format can be extended by storing information in streams and storages that are not
specified in section 2. Implementations are not required to preserve or remove additional streams or

storages when modifying an existing document.

%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
%5bMS-ODRAW%5d.pdf#Section_8560795e77594745838ff7f2ef2f1872
%5bMS-OVBA%5d.pdf#Section_575462babf6741909facc275523c75fc
%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083
%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d
https://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-OLEDS%5d.pdf#Section_85583d21c1cf4afea35fd6701c5fbb6f

28 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2 Structures

2.1 File Structure

A Word Binary File is an OLE compound file as specified by [MS -CFB] . The file consists of the

following storages and streams.

2.1.1 WordDocument Stre am

The WordDocument stream MUST be present in the file and MUST have an FIB at offset 0. It also

contains the document text and other information referenced from other parts of the file. The stream
has no predefined structure other than the FIB at the beginning.

In the context of Word Binary Files, the delay stream that is refe renced in [MS -ODRAW] is the
WordDocument stream.

The WordDocument stream MUST NOT be larger than 0x7FFFFFFF bytes.

2.1.2 1Table Stream or 0Table Stream

Either the 1Table stream or the 0Table stream MUST be present in the file. If the FIB at offset 0 in the
WordDocument stream has base.fW hichTblStm set to 1, this stream is called 1Table. Otherwise, it is
called 0Table.

If the document is encrypted as specified in section 2.2.6 , this stream MUST have an
EncryptionHeader at offset 0, as specified in section 2.2.6. If the document is not encrypted, this

stream has no predefined structure. Other than the possible EncryptionHeader , this stream contains
the data that is referenced from the FIB or from other parts of the file.

This docu mentation refers to this stream as the Table Stream .

If a file contains both a 1Table and a 0Table stream, only the stream that is referenced by
base.fWhichTblStm is used. The unreferenced stream MUST be ignored.

The Table Stream MUST NOT be larger than 0x 7FFFFFFF bytes.

2.1.3 Data Stream

The Data stream has no predefined structure. It contains data that is referenced from the FIB or from
other parts of the file. This stream need not be present if there are no references to it.

The Data stream MUST NOT be larger than 0x7FFFFFFF bytes.

2.1.4 ObjectPool Storage

The Object Pool storage contains storages for embedded OLE objects . This storage need not be

present if there are no embedded OLE objects in the document.

2.1.4.1 ObjInfo Stream

Each storage within the ObjectPool storage contains a stream whose name is " \ 003ObjInfo" where
\ 003 is the character with value 0x0003, not the string lite ral " \ 003". This stream contains an ODT
structure which specifies information about that embedded OLE object .

%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
%5bMS-ODRAW%5d.pdf#Section_8560795e77594745838ff7f2ef2f1872

29 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2.1.4.2 Print Stream

Each storage within the ObjectPool storage optionally contains a stream whose name is " \ 003PRINT"
where \ 003 is the character with value 0x0003, not the string literal " \ 003". This stream contains an

MFPF followed immediately by a Metafile as specified in [MS -WMF] . If no PRINT or EPRINT stream is
present, then the object does not have a print presentation distinct from it s screen presentation.

2.1.4.3 EPrint Stream

Each storage within the ObjectPool storage optionally contains a stream whose name is " \ 003EPRINT"

where \ 003 is the character with value 0x0003, not the string literal " \ 003". <1> This stream contains
an Enhanced Metafile, as specified in [MS -EMF] , to be used when printing the object. If no EPRINT or
PRINT stream is present, then the object does not have a print presentation distinct from its screen
presentation.

2.1.5 Custom XML Data Storage

The Custom XML Data storage is an optional storage whose name MUST be "MsoDataStore".

The contents of the storage are specified in [MS -OSHARED] section 2.3.6.

2.1.6 Summary Information Stream

The Summary Information stream is an optional stream whose name MUST be
"\ 005SummaryInformation", where \ 005 is the character with value 0x0005, and not the string literal
" \ 005".

The contents of this stream are specified in [MS-OSHARED] section 2.3.3.2.1.

2.1.7 Document Summary Information Stream

The Document Summary Information stream is an optional stream whose name MUST be
"\ 005DocumentSummaryInformation", where \ 005 is the character with value 0x0005, not the string
literal " \ 005".

The contents of this stream are specified in [MS -OSHARED] section 2.3.3.2.2.

2.1.8 Encryption Stream

The Encryption stream is an optional stream whose name MUST be "encryption". The format of this
stream is specified in section 2.2.6.3 . This stream MUST NOT be present unless both of the following
conditions are met:

Á The document is encrypted with Office Binary Document RC4 CryptoAPI Encryption (section
2.2.6.3).

Á The fDocProps value is set in the EncryptionHeader .Flags .

2.1.9 Macros Storage

The Macros storage is an optional storage that contains the macros for the file. If present, it MUST be
a Project Root Storage as defined in [MS -OVBA] section 2.2.1.

%5bMS-WMF%5d.pdf#Section_4813e7fd52d04f42965f228c8b7488d2
%5bMS-EMF%5d.pdf#Section_91c257d7c39d4a369b1f63e3f73d30ca
%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d
%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d
%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d
%5bMS-OVBA%5d.pdf#Section_575462babf6741909facc275523c75fc

30 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2.1.10 XML Signatures Storage

The XM L signatures storage is an optional storage whose name MUST be "_xmlsignatures". This
storage contains digital signatures as specified in [MS -OFFCRYPTO] section 2.5.2.4. This storage

MAY<2> be ignored.

2.1.11 Signatures Stream

The signatures stream is an optional stream whose name MUST be "_signatures". This stream
contains digital signatures as specified in [MS -OFFCRYPTO] section 2.5.1. This stream MAY <3> be

ignored.

2.1.12 Information Rights Management Data Space Storage

The Information Rights Management Data Space storage is an optional storage whose name MUST be

"\ 006DataSpaces", where \ 006 is the character with value 0x0006, and not the string literal " \ 006".

This storage is specified in [MS -OFFCRYPTO] section 2.2.

If this storage is present, the Protected Content Stream MUST also be present.

If this storage is present, all speci fied streams and storages other than this storage and the Protected
Content Stream SHOULD <4> be read from the Protected Content Stream as specified in [MS -
OFFCRYPTO] section 1.3.2 and if any o f those streams and storages exist outside of the Protected
Content Stream, they SHOULD <5> be ignored.

2.1.13 Protected Content Stream

The Protected Content Stream is an optional stream whose name MUST be " \ 009DRMContent", where
\ 009 is the character with value 0x0009, and not the string literal " \ 009". This storag e is specified in

[MS -OFFCRYPTO] section 2.2.10.

If this stream is present, the Information Rights Management Da ta Space Storage MUST also be

present.

2.2 Fundamental Concepts

2.2.1 Character Position (CP)

A character position, which is also known as a CP, is an unsigne d 32 -bit integer that serves as the
zero -based index of a character in the document text. There is no requirement that the text at
consecutive character positions be at adjacent locations in the file. The size of each character in the

file also varies. The location and size of each character in the file can be computed using the algorithm
in section 2.4.1 (Retrieving Text).

Characters include the text of the document, anchors for objects such as footnotes or textboxes, and
control characters such as paragraph marks and table cell marks.

Unless otherwise specified by a particular usage, a CP MUST be greater than or equal to zero and less
than 0x7FFFFFFF. The range of valid character positions in a particular document is given by the

algorithm in section 2.4.1 (Retrieving Text).

2.2.2 PLC

The PLC structure is an array of characte r positions followed by an array of data elements. The data
elements for any PLC MUST be the same size of zero or more bytes. The number of CPs MUST be one

more than the number of data elements. The CPs MUST appear in ascending order. There are different

%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083
%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083
%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083
%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083

31 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

t ypes of PLC structures, as specified in section 2.8 . Each type specifies whether duplicate CPs are
allowed for that type.

If the total size of a PLC (cbPlc) and the size of a single data element (cbData) are known, the
number of data elements in that PLC (n) is given by the following expression:

The preceding expression MUST yield a whole number for n.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

aCP (variable)

é

aData (variable)

é

aCP (variable length): An array of CP elements. Each type of PLC structure specifies the meaning of
the CP elements and the allowed range.

aData (variable length): Each type of PLC structure specifies the structure and meaning of the data

elements, any restrictions on the number of data elements, and any restrictions on the data
contained therein. It also specifies the relationship between the data elements and the
corresponding CPs .

2.2.3 Valid Selection

Many constructs in file types described by this document refer to ranges of CPs. When such ranges
specify that they are restricted to a valid selection, the following rules apply.

Á If the range contains content from more than one table cell at a particular table depth, then it
MUST contain only whole table rows at that table depth. For furth er specification, see Overview of
Tables (section 2.4.3).

Á If the range contains a field begin character, field separator character, or field end character, then

it MUST contain the entire field. F or further specification, see Plcfld (section 2.8.25).

Á Both ends of the range MUST be in the same document part .

Á If the range is in the footnote document , then both ends MUST be in the same footnote. For
further specification, see PlcffndTxt (section 2.8.20).

Á If the range is in the header document , then both ends MUST be in the same header or footer. For
further specification, see Plcfhdd (section 2.8.22) .

Á If the range is in the comment document , both ends MUST be in the same comment. For further

specification, see PlcfandTxt (section 2.8 .8).

Á If the range is in the endnote document , then both ends MUST be in the same end note. For
further specification, see PlcfendTxt (se ction 2.8.17).

32 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Á If the range is in the textbox document , then both ends MUST be in the same textbox. For further
specification, see Plcft xbxTxt (section 2.8.32).

Á If the range is in the header textbox document , then both ends MUST be in the same textbox. For
further specification, see PlcfHdrtxbxTxt (section 2.8.23).

2.2.4 STTB

The STTB is a string table that is made up of a header that is followed by an array of el ements. The
cData value specifies the number of elements that are contained in the array.

0 1 2 3 4 5 6 7 8 9

1

0 1 2 3 4 5 6 7 8 9

2

0 1 2 3 4 5 6 7 8 9

3

0 1

fExtend (variable) cData (variable)

cbExtra cchData 0 (variable)

Data 0 (variable) ExtraData 0 (variable)

cchData 1 (variable) Data 1 (variable)

ExtraData 1 (variable) é

cchData cData -1 (variable) Data cData -1 (variable)

ExtraData cData -1 (variable)

The header consists of the following.

fExtend (variable): If the first two bytes of the STTB are equal to 0xFFFF, this is a 2 -byte fExtend
field that specifies, by its existence, that the Data fields in this STTB contain extended (2 -byte)
characters and that the cchData fields are 2 bytes in size. If the first two bytes of the STTB are
not equal to 0xFFFF, this fExtend field does not exist, which specifies, by its nonexistence, that
the Data fields in this STTB contain nonextended (1 -byte) characters and that the cchData fields

are 1 byte in size.

cData (variable): A 2 -byte unsigned integer or a 4 -byte signed integer that specifies the count of
elements in this STTB . If this is a 2 -byte unsigned integer, it MUST be less than 0xFFFF. If this is
a 4 -byte signed integer, it MUST be greater than zero. Unless otherwise specified, this is a 2 -byte
unsign ed integer.

cbExtra (2 bytes): An unsigned integer that specifies the size, in bytes, of the ExtraData fields in
this STTB .

The array of elements consists of the following.

cchData (variable): An unsigned integer that specifies the count of characters in t he Data field
following this field. If this STTB is using extended characters as defined by fExtend , the size of
cchData is 2 bytes. If this STTB is not using extended characters, the size of cchData is 1 byte.

Data (variable): The definition of each STTB specifies the meaning of this field. If this STTB uses
extended characters, the size of this field is 2× cchData bytes and it is a Unicode string unless

otherwise specified by the STTB definitio n. If this STTB does not use extended characters, then

33 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

the size of this field is cchData bytes and it is an ANSI string, unless otherwise specified by the
STTB definition.

ExtraData (variable): The definition of each STTB specifies the structure and meanin g of this field.
The size of this field is cbExtra bytes.

2.2.5 Property Storage

Files in Word Binary File Format store the properties of characters, paragraphs, tables, pictures, and
sections as lists of differences from the default. A Prl specifies each difference . It consists of a Single

Property Modifier (Sprm) and its operand. An application can determine the final set of properties by
applying lists of Prl s in the order that is specified in section 2.4.6 (Applying Properties).

An application SHOULD <6> skip any Prl that corresponds to a property or feature not present in the
applica tion by using Sprm.spra to determine the size of the Prl to skip.

The definition of each Sprm in section 2.6 specifies the default value for the corresponding property.

If multiple Prl s modify the same property, the last one that is applied determines the final value of
that property unless otherwise specified in a Sprm definition in section 2.6.

Any restrictions on the ordering of Prl s are included in the specifications of the individual Sprm s
inv olved in the restriction. See sprmTDelete as an example.

In cases where multiple Sprm s modify the same property, but are supported by different application
versions, an application generating a file MUST first emit the Sprm that has the lower ispmd ,
followed by the Sprm that has the higher ispmd . For example, sprmPBrcTop80 and sprmPBrcTop
both modify the top border of a paragraph, but sprmPBrcTop can express more colors. If an
application emits only sprmPBrcTop, applications that support only sprmPBrcTop80 do not display a

top bord er.

2.2.5.1 Sprm

The Sprm structure specifies a modification to a property of a character, paragraph, table, or section.

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

ispmd A sgc spra

ispmd (9 bits): An unsigned integer that, when combined with fSpec , specifies the property being
modified. See the tables in the Single Property Modifiers section (2.6) for the complete list of valid
ispmd , fSpec , spra combinations for each sgc .

A - fSpec (1 bit): When combined with ispmd , specifies the property being modified. See the tables
in the Single Property Modifiers section (2.6) for the complete list of valid ispmd , fSpec , spra
combinations for each sgc .

sgc (3 bits): An unsigned integer that specifies the kind of document content to which this Sprm
applies. The following table specifies the valid values and their meanings.

34 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Sgc Meaning

1 Sprm is modifying a paragraph property.

2 Sprm is modifying a character property.

3 Sprm is modifying a picture property.

4 Sprm is modifying a section property.

5 Sprm is modifying a table property.

spra (3 bits): An unsigned integer that specifies the size of the operand of this Sprm . The following

table specifies the valid values and their meanings.

Spra Meaning

0 Operand is a ToggleOperand (which is 1 b yte in size).

1 Operand is 1 byte.

2 Operand is 2 bytes.

3 Operand is 4 bytes.

4 Operand is 2 bytes.

5 Operand is 2 bytes.

6 Operand is of variable length. The first byte of the operand indicates the size of the rest of the
operand, except in the cases of sprmTDefTable and sprmPChgTabs .

7 Operand is 3 bytes.

2.2.5.2 Prl

The Prl structure is a Sprm that is followed by an o perand. The Sprm specifies a property to modify,
and the operand specifies the new value.

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

sprm operand (variable)

...

sprm (2 bytes): A Sprm which specifies the property to be modified.

operand (variable): A variable - length operand for the sprm . The size of the operand is specified by
sprm.spra . The meaning of the operand depends on the sprm , see section 2.6 (Single Property
Modifiers).

2.2.6 Encryption and Obfuscation (Password to Open)

A file in Word Binary File Format can be password protected by using one of the following
mechanisms:

Á XOR obf uscation (section 2.2.6.1)
Á Office binary document RC4 encryption (section 2.2.6.2)
Á Office binary document RC4 CryptoAPI encryption <7> (section 2.2.6.3)

If FibBase .fEncrypted and FibBase.fObfuscated are both 1, the file is obfuscated by using XOR
obfuscation (section 2.2.6.1) as specified in section 2.2.6.1.

35 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

If FibBase.fEncrypted is 1 and FibBase.fObfuscated is 0, the file is encrypted by using either
Office Binary Document RC4 Encryption (section 2. 2.6.2) or Office Binary Document RC4 CryptoAPI

Encryption (section 2.2.6.3), with the EncryptionHeader stored in the first FibBase.lKey bytes of
the Table stream . The EncryptionHeader.EncryptionVe rsionInfo specifies which encryption

mechanism was used to encrypt the file.

See Security Considerations for information about security concerns relating to file obfuscation and
encryption for thi s file format.

2.2.6.1 XOR Obfuscation

In a file that is password protected by using XOR obfuscation, FibBase .fE ncrypted and
FibBase.fObfuscated MUST both be 1.

The password verifier computed from the password as specified in Binary Document Password Verifier
Derivation Method 2 in [MS -OFFCRYPTO] section 2.3.7.4 MUST be stored in FibBase. lKey .

The WordDocument stream , the Table stream , and the Data stream MUST be obfuscated using XOR
Data Transformation Method 2 as specified in [MS -OFFCRYPTO] section 2.3.7.6. All other streams and

storages MUST NOT be obfuscated.

The byte transformation specified in [MS -OFFCRYPTO] section 2.3.7.6 MUST be carried out in the
WordDocument stream relative to the beginning of the stream, but the initial 68 bytes MUST be
written out with their untransformed values.

2.2.6.2 Office Binary Document RC4 Encryption

In a file that is password protected by using Office binary document RC4 encryption as specified in
[MS -OFFCRYPTO] section 2.3.6, FibBase .fEncrypted MUST be 1 and FibBase.fObfuscated MUST be
0.

The EncryptionHeader , as specified in [MS -OFFCRYPTO] section 2.3.6.1, MUST be written in
unencrypted form in the first FibBase.lKey bytes of the Table stream . The remainder of the Table

stream, the WordDocument stream beyond the initial 68 bytes, and the entire Data stream MUST be
encrypted.

These three streams of data MUST be encrypted in 512 -byte blocks. The block number MUST be set to
zero at the beginning of the stream and MUST be incremented at each 512 -byte boundary. The
encryption algorithm MUST be carried out at the beginning of the Table stream and the
WordDocument stream even though some of the bytes are written in unencrypted form .

All other streams and storages MUST NOT be encrypted.

2.2.6.3 Office Binary Document RC4 CryptoAPI Encryption

In a file that is password protected by using Office binary document RC4 CryptoAPI encryption as
specified in [MS -OFFCRYPTO] section 2.3.5, FibBase .fEncrypted MUST be 1 and
FibBase.fObfuscated MUST be 0.

The EncryptionHeader as specified in [MS -OFFCRYPTO] section 2.3.5.1 MUST be written in
unencrypted form in the first FibBase.lKey bytes of the Table stream . The remainder of the Table
stream, the WordDocument stream beyond the initial 68 bytes, and the entire Data stream MUST be
encrypted.

These three streams of data MUST be encrypted in 512 -byte blocks. The block number MUST be set to
zero at the beginning of the stream and MUST be incremented at each 512 byte boundary. The

encryption algorithm MUST be carried out at the beginning of the Table stream and the
WordDocument stream even though some of the bytes are written in unencrypted form.

%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083
%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083
%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083

36 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

The ObjectPool storage MUST NOT be pre sent and if the file contains OLE objects , the storage
objects for the OLE objects MUST be stored in the Data stream as specified in sprmCPicLocation .

If fDocProps is set in the EncryptionHeader .Flags , the Encryption stream MUST be present, the
Summary Information stream MUST NOT be present, and a placeholder Document Summary

Information stream MUST be present as specified in [MS -OFFCRYPTO] section 2.3.5.4.

If fDocProps is not set in the EncryptionHeader .Fl ags , the Document Summary Information stream
and the Summary Information stream MUST NOT be encrypted.

All other streams and storages MUST NOT be encrypted <8> .

2.3 Document Parts

The range of CPs in a document is separated into multiple logical parts. Many features operate wi thin
the individual parts and use CPs relative to the beginning of the part in which they operate rather than
relative to the beginning of the document. This section defines the document parts and specifies the

corresponding range of CPs.

All documents MUS T include a non -empty Main Document part. In addition, if any of the other

document parts are non -empty, the document MUST include one additional paragraph mark
character (Unicode 0x000D) beyond the end of the last non -empty document part. That character is
not displayed to or editable by the user, because it is outside of any document part.

2.3.1 Main Document

The main document contains all content outside any of the specialized document parts, including
anchors that specify where content from the other document parts appears.

The main document begins at CP zero, and is FibRgLw97 .ccpText characters long.

The last character in the main document MUST be a paragraph mark (Unicode 0x000D).

2.3.2 Footnotes

The footnote document contains all of the content in the footnotes. It begins at the CP immediately
foll owing the Main Document , and is FibRgLw97 .ccpFtn characters long.

The locations of individual footnotes within the footnote document are specified by a PlcffndTxt whose
location is specified by the fcPlcffndTxt member of FibRgFcLcb97 . The locations of the footnote
referen ce characters in the Main Document are specified by a PlcffndRef whose location is specified

by the fcPlcffndRef member of FibRgFcLcb97 .

2.3.3 Headers

The header document contains all content in headers and footers as well as the footnote and endnote
separators. It begins immediately after the footnote document and is Fib RgLw97 .ccpHdd characters

long.

The header document is split into text ranges called stories, as specified by PlcfHdd . Each story
specifies the contents of a single header, footer, or footnote/endn ote separator. If a story is non -
empty, it MUST end with a paragraph mark that serves as a guard between stories. This paragraph
mark is not considered part of the story contents (that is, if th e story contents require a paragraph
mark themselves, a second paragraph mark MUST be used).

Stories are considered empty if they have no contents and no guard paragraph mark. Thus, an empty
story is indicated by the beginning CP, as specified in PlcfHdd , being the same as the next CP in
PlcfHdd .

37 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

If the header document exists, as indicated by FibRgLw97.ccpHdd and FibRgFcLcb97 .lcbPlcfHdd
being nonzero, its first six stories specify footnote and endnote separators, in this order.

Story number Contents

0 Footnote separator

1 Footnote continuation separator

2 Footnote continuation notice

3 Endno te separator

4 Endnote continuation separator

5 Endnote continuation notice

The footnote and endnote separator stories do not nee d to contain whole paragraphs ðthat is,

they do not necessarily need to have paragraph marks in their contents. However, they MUST
have the guard paragraph marks if they are non -empty.

Following the footnote and endnote separator stories are the stories tha t contain the contents of

headers and footers. Six such stories MUST exist for every section of the Main Document . The
first such grou p of stories specifies the contents of the headers and footers for the first section.
The second group specifies the contents of the headers and footers for the second section, and so
on. The stories within each group MUST appear in the following order.

St ory number in group Contents

0 Even page header. This MUST be non -empty if different even and odd
headers and footers are enabled for the section.

1 Odd page header. If different even and odd headers and footers are not
enabled for the section, the odd page header MUST be used on both even
and odd pages.

2 Even page footer. This MUST be non -empty if different even and odd
headers and footers are enabled for the section.

3 Odd page footer. If different even and odd headers and footers are not
enabled for the section, the odd page footer MUST be used on both even
and odd pages.

4 First page header. This MUST be non -empty if different first page headers
and footers are enable d for the section.

5 First page footer. This MUST be non -empty if different first page headers
and footers are enabled for the section.

Non -empty header and footer stories MUST contain whole paragraphs and thus MUST end with a
paragraph mark . Therefore, non -empty header and footer stories MUST have two paragraph marks at

their ends, one as part of the content followed by a separate guard paragraph mark.

An empty header or footer story specifies that the header or footer of the corresponding t ype of the

previous section is used. For the first section, an empty header or footer story specifies that it does
not have a header or footer of this type.

2.3.4 Comments

The commen t document contains all of the content in the comments. It begins at the CP immediately

following the Header Document and is FibRgLw97 .ccpAtn characters long.

38 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

The locations of individual comments within the comment document are specified by a PlcfandTxt
whose location is specified by the fcPlcfandTxt member of FibRgFcLcb97 . The locations of the

comment reference characters in the Main Document are specifi ed by a PlcfandRef whose location is
specified by the fcPlcfandRef member of FibRgFcLcb97 .

2.3.5 Endnotes

The endnote docu ment contains all of the content in the endnotes. It begins at the CP that
immediately follows the Comment Document and is FibRgLw97 .ccpEdn characters long.

The locations of individual endnotes within the endnote document are specified by a PlcfendTxt whose
location is specified by the fcPlcfendTxt member of FibRgFcLcb97 . The locations of the endnote
reference characters in the Main D ocument are specified by a PlcfendRef whose location is specified by
the fcPlcfendRef member of FibRgFcLcb97 .

2.3.6 Textboxes

The textbox document contains all of the content in the textboxes whose anchors are in the Main
Document . It begins at the CP imm ediately following the Endnote Document and is
FibRgLw97 .ccpTxbx characters long.

The locations of individual textboxes within the textb ox document are specified by a PlcftxbxTxt whose
location is specified by the fcPlcftxbxTxt member of the FibRgFcLcb97 . The locations of the textbox
anchors in the Main Document are specified by a plcfSpa whose location is specified by the

fcPlcSpaMom member of the FibR gFcLcb97 .

Not all members of a plcfSpa specify the location of a textbox. The lid member of the FTXBXS
structure specifies the relationship between shape anchors and textbox anchors.

2.3.7 Header Textboxes

The header textbox document contains all of the content in the textboxes whose anchors are in the

Header Document . It begins at the CP immediately following the Textbox Document and is
FibRgLw97 .ccpHdrTxbx characters long.

The locations of individual textboxes within the header textbox document are specified by a
PlcfHdrtxbxTxt whose location is specified by the fcPlcfHdrtxbxTxt member of the FibRgFcLcb97 .
The locations of the textbox anchors in the Header Document are specifi ed by a plcfSpa whose

location is specified by the fcPlcSpaHdr member of the FibRgFcLcb97 .

Not all members of a plcfSpa specify the location of a textbox. The lid member of the FTXBXS
structure specifies the relationship between shape anchors and textbox anchors.

2.4 Document Content

This s ection specifies algorithms that are used to analyze document content and determine its
properties. These algorithms take CPs as input and return some piece of information about the

document conte nt at that location. For example, the algorithm in section 2.4.1 returns the text at that
CP.

Collectively, these algorithms specify relationships among data structures in the file types that are
specified in this documentation. These relationships MUST be maintained. These algorithms are not

examples, but definitions of how to interpret these data structures.

These algorithms can derive significant performance benefits from common programming prac tices
such as caching the results from previous input.

39 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2.4.1 Retrieving Text

The following algorithm specifies how to find the text at a particular character position (cp). Negative
character positions are not valid.

1. Read the FIB from offset zero in the WordDocument Stream .

2. All versions of the FIB contain exactly one FibRgFcLcb97 , though it can be nested in a larger
structure. FibRgFcLcb97.fcClx specifies the offset in the Table Stream of a Clx .
FibRgFcLcb97.lcbClx specifies the size, in bytes, of that Clx . Read the Clx from the Table
Stream.

3. The Clx contains a Pcdt , and the Pcdt contains a PlcPcd . Find the largest i such that
PlcPcd.aCp[i] Ò cp . As with all Plc s, the elements of PlcPcd.aCp are sorted in ascending order.

Recall from the definition of a Plc that the aCp array has one more element than the aPcd array.
Thus, if the last element of PlcPcd.aCp is less than or equal to cp , cp is outside the range of valid
character positions in this document.

4. PlcPcd.aPcd[i] is a Pcd . Pcd.fc is an FcCompressed that specifies t he location in the
WordDocument Stream of the text at character position PlcPcd.aCp[i] .

5. If FcCompressed.fCompressed is zero, the character at position cp is a 16 -bit Unicode

character at offset FcCompressed.fc + 2(cp - PlcPcd .aCp[i]) in the WordDocument Stream.
This is to say that the text at character position PlcPcd.aCP[i] begins at offset
FcCompressed.fc in the WordDocument Stream and each character occupies two bytes.

6. If FcCompressed.fCompre ssed is 1, the character at position cp is an 8 -bit ANSI character at
offset (FcCompressed.fc / 2) + (cp - PlcPcd .aCp[i]) in the WordDocument Stream, unless it is
one of the special values in the table defined in the description of FcCompressed.fc . This is to
say that the text at character position PlcPcd.aCP[i] begins at offset FcCompressed.fc / 2 in

the WordDocument Stream and each character occupies one byte.

2.4.2 Determining Paragraph Boundaries

This section specifies how to find the beginning and end character positions of the paragraph that
contains a given character position. The character at the end character position of a paragraph MUST

be a paragraph mark , an end -of -section character, a cell mark, or a TT P mark (See Overview of
Tables). Negative character positions are not valid.

To find the character position of the first character in the paragraph that contains a given character
position cp :

1. Follow the algorithm from Retrieving Text up to and including step 3 to find i. Also remember the
FibRgFcLcb97 and PlcPcd found in step 1 of Retrieving Text. If the algorithm from Retrieving

Text specifies that cp is invalid, leave the algorithm.

2. Let pcd be PlcPcd.aPcd[i].

3. Let fcPcd be Pcd .fc.fc. Let fc be fcPcd + 2(cp ï PlcPcd.aCp[i]). If Pcd.fc.fCompressed is one,

set fc to fc / 2, and set fcPcd to fcPcd /2.

4. Read a PlcBtePapx at offset FibRgFcLcb97 .fcPlcfBtePapx in the Table Stream , and of size
FibRgFcLcb97 . lcbPlcfBtePapx . Let fcLast be the last element of plcbtePapx.aFc . If fcLast is
less than or equal to fc , examine fcPcd . If fcLast is less than fcPcd , go to step 8. Otherwise, set

fc to fcLast . If Pcd.fc.fCompressed is one, set fcLast to fcLast / 2. Set fcFirst to fcLast and
go to step 7.

5. Find the largest j such that plcbtePapx.aFc[j] Ò fc . Read a PapxFkp at offset
aPnBtePapx[j].pn *512 in the WordDocument Stream .

40 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

6. Find the largest k such that PapxFkp.rgfc[k] Ò fc . If the last element of PapxFkp.rgfc is less
than or equal to fc , then cp is outside the range of character positions in this document, and is

not valid. Let fcFirst be PapxFkp.rgfc[k] .

7. If fcFirst is greater than fcPcd , then let dfc be (fcFirst ï fcPcd) . If Pcd .fc .fCompressed is

zero, then set dfc to dfc / 2. The first character of the paragraph is at character position
PlcPcd.aCp[i] + dfc . Leave the algorithm.

8. If PlcPcd.aCp[i] is 0, then the first character of the paragraph is at character position 0. Leave
the algorithm.

9. Set cp to PlcPcd.aCp[i] . Set i to i - 1. Go to step 2.

To find the character position of the last character in the paragraph that contains a given character
position cp :

1. Follow the algorithm from Retrieving Text up to and including step 3 to find i. Also remember the
FibRgFcLcb97 , and Pl cPcd found in step 1 of Retrieving Text. If the algorithm from Retrieving

Text specifies that cp is invalid, leave the algorithm.

2. Let pcd be PlcPcd.aPcd[i] .

3. Let fcPcd be Pcd.fc.fc . Let fc be fcPcd + 2(cp ï PlcPcd.aCp[i]). Let fcMac be fcPcd +
2(PlcPcd.aCp [i+1] - PlcPcd.aCp[i]). If Pcd.fc.fCompressed is one, set fc to fc /2, set fcPcd to

fcPcd /2 and set fcMac to fcMac /2.

4. Read a PlcBtePapx at offset FibRgFcLcb97 .fcPlcfBtePapx in the Table Stream, and of size
FibRgFcLcb97 . lcbPlcfBtePapx . Then find the largest j such that plcbtePapx.aFc [j] Ò fc . If the
last element of plcbtePapx.aFc is less than or equal to fc , then go to step 7. Read a PapxFkp at
offset aPnBtePapx [j] .pn *512 in the WordDocument Stream.

5. Find largest k such that PapxFkp.rgfc[k] Ò fc . If the last element of PapxFkp.rgfc is less than
or equal to fc , then cp is outside the range of character positions in this document, and is not

valid. Let fcLim be PapxFkp.rgfc[k+1] .

6. If fcLim Ò fcMac , then let dfc be (fcLim ï fcPcd) . If Pcd .fc .fCompressed is zero, t hen set dfc
to dfc / 2. The last character of the paragraph is at character position PlcPcd.aCp[i] + dfc ï 1.
Leave the algorithm.

7. Set cp to PlcPcd.aCp[i+1] . Set i to i + 1. Go to step 2.

2.4.3 Overview of Tables

A table cell consists of one or more paragraphs at the same nonzero table depth and, optionally, one
or more tables whose table depth is one greater than that of the containing cell. The last paragraph in
a table cell is terminated by a cell mark. If the table depth is 1, the cell mark MUST be character
Unicode 0x0007. If the table depth is greater than 1, the cell mark MUST be a paragraph mark

(Unicode 0x000D) with sprmPFInnerTableCell applied with a value of 1.

A table row has between 1 and 63 table cells, each at the same table depth, followed by a Table

Terminating Paragraph mark (TTP mark, also called a row mark), also at the same table depth. If the
table depth is 1, then the TTP mark MUST be a character Unicode 0x0007 with sprmPFTtp applied with
a value of 1 . If the table depth is greater than 1, then the TTP mark MUST be a paragraph mark
(Unicode 0x000D) with sprmPFInnerTtp applied with a value of 1.

The table depth of a paragraph, table cell, or table row, is derived from the values of sprmPFInTable,

sprmPI tap, and sprmPDtap applied as direct paragraph properties to the paragraph mark, cell mark,
or TTP mark. See section 2.4.6.1 , Direct Paragraph Formatting for further specifications. Paragraphs
tha t are not in a table have a table depth of zero.

41 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

The following [ABNF] rulelist defines a table at depth N (TableN) in terms of paragraphs at depth N
(ParaN), cell marks at depth N (CellMarkN), TTP marks at depth N (TTPN), and tables at depth N+1

(TableN1). ABNF is specified in [RFC4234] .

Two adjacent table rows of the same table depth are considered part of the same table unless they

differ in one of the following properties:

Á The operand to sprmTIpgp

Á The table style, as specified by sprmTIstd

Á The table directionality as specified by section sprmTFBidi or section sprmTFBidi90

Á The table position and wrapping as specified by sprmTPc, sp rmTFNoAllowOverlap, sprmTDxaAbs,
sprmTDyaAbs, sprmTDxaFromText, sprmTDyafromText, sprmTDxaFromTextRight, and
sprmTDyaFromTextBottom

If neither table row specifies nondefault values for the preceding table position and wrapping
properties, then two adjacent table rows of the same table depth are considered different tables if the
first paragraphs of the first cells of the rows differ in any of the paragraph frame properties specified
by sprmPPc, sprmPDxaAbs, sprmPDyaAbs, sprmPDxaWidth, sprmPWHeightAbs, sprmP Dcs, sprmPWr,
sprmPDxaFromText, sprmPDyaFromText, sprmPFLocked, sprmPFNoAllowOverlap, and
sprmPFrameTextFlow.

In addition, two table rows are considered part of different tables if a range - level protection
bookmark is present whose type, as specified by the sdtt member of the corresponding SDTI , is
sdttPara and that bookmark (1) contains content from more than one table cell but does not contain
the entirety of both rows.

The properties of each row mark MUST define the cells for that table row. SprmTDefTable and
sprmTInsert are used to create cell definitions, and sprmTDelete is used to remove them. The number
of cell definitions applied to the row mark MUST be equal to the number of cells in the row. There is no

requirement that each row of a table have the same number of cells.

An application SHOULD <9> use sprmTDefTable to d efine table cells for applications that do not
process sprmPTableProps, and at the same time use sprmTInsert for applications that do process
sprmPTableProps.

The following diagram shows several elements of a table and gives examples of Sprm s that can be
used to modify each. The table in this example includes spacing between cells to demonstrate borders
and shading. It includes a nested table to demonstrate table depth.

https://go.microsoft.com/fwlink/?LinkId=90462

42 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Figure 1 : A sample table

To determine which borders are displayed, see the following sections from [ECMA -376] Part 4:

Á Section 2.4.63 tcBorders (Table Cell Bord ers)

Á Section 2.4.37 tblBorders (Table Border Exceptions)

Á Section 2.4.38 tblBorders (Table Borders)

Cells can be vertically merged to create the appearance of a single cell spanning multiple rows. The
cell mark characters for the merged cells MUST still app ear in the file. The second and subsequent
cells in the merged group MUST NOT contain any content other than their cell marks. The following
diagram shows a table with vertically merged cells. It uses inside borders to demonstrate that the
vertically merge d cells act as one cell.

https://go.microsoft.com/fwlink/?LinkId=200054

43 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Figure 2 : A table with vertically merged cells

2.4.4 Determining Cell Boundaries

This section describes an algorithm to find the boundaries of the innermost table cell containing a
given character position or to determine that the given character positio n is not in a table cell. Every
valid character position in a document belongs to a paragraph, so table depth can be computed for
each paragraph. If a paragraph is found to be at depth zero, that paragraph is not in a table cell.

Given character position cp , use the following algorithm to determine if cp is in a table cell.

1. Follow the procedure from Direct Paragraph Formatting to find the paragraph properties for the
paragraph that contains cp . Ap ply the properties, and determine the table depth as specified in
Overview of Tables . Call this itapOrig .

2. If itapOrig is 0, then this paragraph is not in a table cell, so the following algorithms do not apply.
Leave this algorithm. Otherwise, cp is in a table.

3. If the character at character position cp is not a TTP mark as specified in Overview of Tables, then
leave this algorithm.

4. If itapOrig is 1, then the cp is not in a table cell. Leave this al gorithm. Otherwise this TTP mark is
in a cell itself, to determine the boundaries of the containing cell set itapOrig to itapOrig ï 1 in
the following algorithms.

Given a character position cp known to be at table depth itapOrig , follow this procedure to determine
the character position of the last character in the innermost table cell that contains cp .

1. Set itap to itapOrig .
2. Determine the character position of the last character in the paragraph that contains cp , as

specified in Determining Paragraph Boundaries . Let this position be called cpLast .
3. Follow the procedure from Direct Paragraph Formatting to find the paragraph properties for the

paragraph that contains cpLas t . Apply the properties, and determine the table depth as specified
in Overview of Tables. Call this itap' . It is invalid for itap' to be less than itap . If itap' is less than

itap , leave the algorithm.

4. If itap' is equal to itap , determine the text at cha racter position cpLast , as specified in Retrieving
Text . If this character is a cell mark, as specified in Overview of Tables, then cpLast is the desired
output. Leave the algorithm.

5. Let cp be cp Last + 1, and go to step 2.

Given a character position cp that is known to be at table depth itapOrig, follow this procedure to
determine the character position of the first character in the innermost table cell that contains cp .

1. Set itap to itapOrig .

44 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2. Determine the character position of the first character in the paragraph that contains cp , as
specified in Determining Paragraph Boundaries. Let this character position be called cpFirst .

3. If cpFirst is zero, then this is the desired output. Leave the algori thm. Negative values for cpFirst
are invalid. If cpFirst is negative, leave the algorithm.

4. Let cpPrev be cpFirst ï 1. Follow the procedure from Direct Paragraph Formatting to find the
paragraph properties for the paragraph that contains cpPrev . Apply the properties, and determine
the table depth as specified in Overview of Tables. Call this itapPrev .

5. If itapPrev is less than itap , then cpFirst is the desired output. Leave the algorithm.
6. If itapPrev is equal to itap , determine the text at character position cpPrev , as specified in

Retrieving Text. If this character is a cell mark or a TTP mark, then cpFirst is the desired output.
Leave the algorithm.

7. Set cp to cpPrev . Go to step 2.

2.4.5 Determining Row Boundaries

This section describes an algorithm to find the boundaries of the innermost table row containing a

given character position or to determine that the given character position is not in a table row. Every

valid character position in a document belongs to a paragraph, so table depth can be computed for
each paragraph. If a pa ragraph is found to be at depth zero, then that paragraph is not in a table row.

This algorithm is the same as Determining Cell Boundaries except that only TTP marks cause a
termination, not cell marks.

Given character position cp , use the following algorithm to determine if cp is in a table.

1. Follow the procedure from Direct Paragraph Formatting to find the paragraph properties for the

paragraph that contains cp . Apply the properties and determine the table depth as specified in
Overview of Tables . Call this itap .

2. If itap is zero, then this paragraph is not in a table row. Leave the algorithm.

Given a character position cp known to be at table depth itap , which is greater than 0, follow this
procedure to determine the character position of the TTP mark of the row that contains cp .

1. Determine the character position of the last cha racter in the paragraph that contains cp , as

specified in Determining Paragraph Boundaries . Let this position be called cpLast .
2. Follow the procedure from Direct Paragraph Formatting to find the p aragraph properties for the

paragraph that contains cpLast . Apply the properties and determine the table depth as specified
in Overview of Tables. Call this itap' . It is invalid for itap' to be less than itap . If itap' is less than
itap , leave the algorithm.

3. If itap' is equal to itap , determine the text at character position cpLast , as specified in Retrieving
Text . If this character is a TTP mark as specified in Overview of Tables, then cpLast is the desired

output. Leave the algorithm.
4. Let cp be cpLast + 1 and go to step 1.

Given a character position cp known to be at table depth itap , which is greater than 0, follow this
procedure to determine the character position of th e first character in the innermost table row that
contains cp .

1. Determine the character position of the first character in the paragraph that contains cp as

specified in Determining Paragraph Boundaries. Let this character position be called cpFirst .

2. If cp First is zero, then this is the desired output. Leave the algorithm. Negative values for cpFirst
are invalid. If cpFirst is negative leave the algorithm.

3. Let cpPrev be cpFirst ï 1. Follow the procedure from Direct Paragraph Formatting to find the
paragrap h properties for the paragraph that contains cpPrev . Apply the properties, and determine
the table depth as specified in Overview of Tables. Call this itapPrev .

4. If itapPrev is less than itap , then cpFirst is the desired output. Leave the algorithm.

5. If it apPrev is equal to itap , determine the text at character position cpPrev , as specified in
Retrieving Text. If this character is a TTP mark as specified in Overview of Tables, then cpFirst is
the desired output. Leave the algorithm.

45 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

6. Set cp to cpPrev . Go to step 1.

2.4.6 Applying Properties

This section specifies algorithms for determining the properties of text, paragraphs, lists, and tables.
The final two subsections (Determining Properties of a Style and Determining Formatting Properties)
specify the order in which the arrays of Prls are combined to compute the final property set. Recall
from section 2.2.5 (Property Storage) that it is valid for multiple Prls to modify the same property. In
this event, the last Prl applied determines the value of that property, unless otherwise specified in the

specification of a particular Sprm . Thus, an application MUS T process the arrays of Prls in the order
specified in section 2.4.6.6, Determining Formatting Properties, to arrive at the correct property set.

Recall also from section 2.2.5 (Property Storage) that a Prl MAY <10> be ignored by applications that
do not support the features represented by the Prl.

2.4.6.1 Direct Paragraph Formatting

This section explains how to find the properties applied directly (as opposed to through a style, for
example) to a pa ragraph, given a character position cp within it. The properties are found as an array
of Prl elements.

1. Follow the algorithm from Determining Paragraph Boundaries for finding the character position of
the last character in the paragraph to completion. From step 5, remember the PapxFkp and k .
From step 4, remember the offset in the WordDocument Stream at which PapxFkp was read. Let

this offset be called of . From step 2 remember the Pcd . If the algorithm from Determining
Paragraph Boundaries specifies that cp is invalid, leave the algorithm.

2. Find a BxPap at PapxFkp .rgbx[k] . Find a PapxInFkp at offset of + 2* BxPap.bOffset

3. Find a GrpprlAndIstd in the PapxInFkp from step 2. The offset and size of the GrpprlAndIstd
is in structed by the first byte of the PapxInFkp , as detailed at PapxInFkp .

4. Find the grpprl within the GrpprlAndIstd . This is an array of Prl elements that specifies the

direct properties of this paragraph.

5. Finally Pcd. Prm specifies further property modifications that apply to this paragraph. If Pcd .Prm
is a Prm0 and the Sprm specifie d within Prm0 modifies a paragraph property, append to the
array of Prl elements from the previous step a single Prl made of the Sprm and value in Prm0 . if
Pcd .Prm is a Prm1 , append to the array o f Prl elements from the previous step any Sprm
structures that modify paragraph properties within the array of Prl elements specified by Prm1 .

2.4.6.2 Direct Character Formatting

This section specifies how to find the properties applied directly to a given character position cp . The
result will be an array of Prl elements that specify the property modifications to be applied.

Additional formatting and properties can affect that cp as well, if a style is applied. To determine the
full set of properties, including those from styles, see section 2.4.6.6 Determining Format ting

Properties.

1. Follow the algorithm from Retrieving Text . From step 5 or 6, determine the offset in the
WordDocument Stream where text was found. Call this offset fc . Also remember from step 4, the
Pcd. If the algorithm from Retrieving Text specifies cp is invalid, leave the algorithm.

2. Read a PlcBteChpx at offset FibRgFcLcb97 .fcPlcfBteChpx in the Table Stream , and of size
FibRgFcLcb97. lcbPlcf BteChpx .

46 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

3. Find the largest i such that plcbteChpx .aFc [i] Ò fc . If the last element of plcbteChpx .aFc is less
than or equal to fc , then cp is outside the range of character positions in this document, and is

not valid. Read a ChpxFkp at offset aPnBteChpx [i] .pn *512 in the WordDocument Stream.

4. Find the largest j such that ChpxFkp .rgfc[j] Ò fc . If the last element of ChpxFkp .rgfc is less than

or equal to fc , then cp is outside the range of character positions in this document, and is not
valid. Find a Chpx at offset ChpxFkp. rgb [i] in ChpxFkp.

5. The grpprl within the Chpx is an array of Prls that specifies the direct properties of this character.

6. Additionally, apply Pcd .Prm which specifies additional properties for this text. If Pcd.Prm is a Prm0
and the Sprm specified within Prm0 modifies a character property (a Sprm with an sgc value of
2), append a single Prl made of the Sprm and value in that Prm0 to the array of Prls from the
previ ous step. If Pcd.Prm is a Prm1 , append any Sprms that modify character properties from the

array of Prls specified by Prm1.

2.4.6.3 Determining List Formatting of a Paragraph

A list in an MS -DOC file cons ists of one or more paragraphs. Each paragraph in a list has a nonzero

iLfo property (see sprmPIlfo) and an iLvl property (see sprmPIlvl), which are used to determine the
information that is neces sary to format the paragraph as a member in a specific list. Paragraphs that
share the same iLfo property, and exist in a range of text that constitutes a Valid Selection , are
considered to be par t of the same list. Paragraphs in a list do not need to be consecutive, and a list
can overlap with other lists. This section describes an algorithm to add list formatting to a paragraph
containing a given character position .

Given character position cp , use the following three -part algorithm to add list formatting to the

paragraph containing cp .

Part 1

1. Follow the procedure for determining formatting properties, as specified in section 2.4.6.6 , to find

the paragraph properties for the paragraph that cp belongs to.

2. Let iLfoCur and iLvlCur be the iLfo (see sprmPIlfo) and iLvl (see sprmPIlvl) properties of the

paragraph, respectively. If iLfoCur is zero, the paragraph is not part of a list, and the algorithm

ends.

3. Let lfo be the LFO at PlfLfo .rgLfo [iLfoCur -1]. If there i s no such LFO, the file is invalid and the

algorithm ends.

4. Let lstf be the LSTF in PlfLst .rgLstf such that lstf . lsid equals lfo . lsid . If there is no such LSTF,

the file is invalid and the algorithm ends.

5. Let lfodata be the LFOData at PlfLfo. rgLfoData [iLfoCur -1].

6. Let lfolvl be the LFOLVL in lfodata .rgLfoLvl such that lfolvl . iLvl equals iLvlCur , if such an

LFOLVL exists. If there is no such LFOLVL, go to part 1 step 8.

7. If lfolvl .fFormatting is nonzero, let lvl be lfolvl.lvl and go to part 2 step 1.

8. Let i be 0. For each LSTF in PlfLst. rgLstf prior to lstf , if LSTF. fSimpleList is zero, let i = i + 9, if

LSTF.fSimpleList is nonzero, let i be i + 1.

9. Let i be i + iLvlCur .

47 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

10. Let lvl be the i th LVL in the array of LVL s appended to PlfLst (see the fcPlfLst field of

FibRgFcLcb97).

Part 2

After the lstf and lvl are determined, the next step is to determine the number text of the paragraph.

1. Let xstNumberText be a copy of lvl.xst .

2. If lvl.lvlf.nfc is not equal to 0x17, go to part 2 step 4. If lvl.lvlf.nfc is equal to 0x17, the

paragraph is in a bulleted level.

3. Let xchBullet be the 16 -bit character at xstNumberText .rgtchar [0]. If xchBullet & 0xF000 is

nonzero, let xstNumberText .rgtchar [0] equal xchBullet & 0x0FFF. Go to part 3 step 1.

4. For each entry j in lvl . lvlf .rgbxchNums such that lvl . lvlf .rgbxchNums [j] is nonzero, let

iLvlTemp be the 16 -bit integer stored at lvl .xst.rgtchar [lvl . lvlf .rgbxchNums [j] - 1]. If iLvlTemp

== iLvlCur , replace the iLvlTemp placeholder in xstNumberText with the level number of the

current paragraph. If iLvlTemp < iLvlCur , replace the iLvlTemp placeholder in xstNumberText with

the lev el number of the closest previous paragraph in the list that has an iLvl property that equals

iLvlTemp . If iLvlTemp > iLvlCur , the file is invalid and the algorithm ends. If lvl.lvlf.fLegal is

nonzero, each of these level numbers MUST be reformatted as acc ording to the fLegal field

description in LVLF before they replace their respective placeholders.

Part 3

After the number text of the paragraphs is determined, the final step is to format the par agraph and

the number text.

1. If lstf .rgistdPara [iLvlCur] != 0x0FFF, apply the style specified by lstf .rgistdPara [iLvlCur] to

both the paragraph and xstNumberText .

2. Apply the character properties specified by lvl .grpprlChpx to xstNumberText .

3. Append the charac ter specified by lvl . lvlf . ixchFollow to xstNumberText . xstNumberText is now

the number text that will be displayed at the beginning of the paragraph.

4. Apply the paragraph properties specified by lvl .grpprlPapx to the paragraph, including

xstNumberText .

5. Justify only the xstNumberText according to the justification specified by lvl . lvlf . jc .

The paragraph is now formatted as part of a list.

2.4.6.4 Determining Level Number of a Paragraph

The level number of a paragraph is the number in the number sequence of the le vel that corresponds
to that paragraph, formatted according to an MSONFC (as specified in [MS -OSHARED] section
2.2.1.3). The number sequence of a level begins at a specified value and increments by 1 for each
paragraph in the level. Also, the number sequence of a level can restart when certain other levels are
encountered. See the specification of LVLF for more inform ation. This section describes an algorithm
to determine the level number of a paragraph containing a given character position .

Given character position cp , use the following algorithm to determine the level number of the
paragraph containing cp :

%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d

48 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

1. Follow steps 1 thru 10 of Determining List Formatting of a Paragraph to get the iLfoCur, iLvlCur ,

lfolvl , and lvl that correspond to the paragraph that cp belongs to.

2. Let nfcCur be lvl.lvlf.nfc . If nfcCur is equal to 0xFF or 0x17, this level has no number sequence,

and the level number of the paragraph is an empty string. In this case, let xsLevelNumber be an

empty string, and the algorithm ends.

3. If lfolvl exists, and lfolvl .fStartAt is nonzero and lfolvl .fFormatting is zero, let iStartAt be

lfolvl . iStartAt . Otherwise, let iStartAt be lvl.lvlf.iStartAt .

4. If lvl.lvlf.fNoRestart is nonzero, let iLvlRestartLim be lvl.lvlf.iLvlRestartLim . Otherwise, let

iLvlRestartLim be iLvlCur .

5. Let numCur be iStartAt .

6. For each paragraph p that has an iLfo property that is equal to iLfoCur and that is in the same

Valid Selection as cp , beginning with the paragra ph starting at the lowest character position up to

but not including the paragraph containing cp : If the iLvl property of the paragraph p is less than

iLvlRestartLim , let numCur be iStartAt . If the iLvl of the paragraph p equals iLvlCur , let numCur

be numC ur + 1.

7. Let xsLevelNumber be a string containing the number specified by numCur formatted according to

the MSONFC (as specified in [MS -OSHARED] section 2.2.1.3) specified by nfcCur .

xsLevelNumber is now the level number of the paragraph.

2.4.6.5 Determining Proper ties of a Style

This section specifies an algorithm to determine the set of properties to apply to text, a paragraph, a
table, or a list when a particular style is applied to it. Given an istd , one or more arrays of Prl can be

derived that express the differences from defaults for this style. Depending on its stk , a style can

specify properties for any combination of tables, paragraphs, and characters.

Given an istd :

1. Read the FIB from offset zero in the WordDocument Stream .

2. All versions of the FIB contain exactly one FibRgFcLcb97 though it can be nested in a larger
structure. Read a STSH from offset FibRgFcLcb97.fcStshf in the Table Stream with size
FibRgFcLcb97.lcbStshf .

3. The given istd is a zero -based index into STSH.rglpstd . Read an LPStd at STSH.rglpstd [istd].

4. Read the STD structur e as LPStd .std , of length LPStd .cbStd bytes.

5. From the STD.stdf .stdfBase obtain istdBase . If istdBase is any value other than 0x0FFF, then
this style is based on another style. Recursively apply this algorithm using istdBase as the

starting istd to obtain o ne or more arrays of Prl s as the properties for tables, paragraphs and
characters from the base style.

6. From the STD.stdf .stdfBase obtain stk . For more information, see the description of the cupx
member of StdfBase . Read an STD.grLPUpxSw . Based on the stk , grLPUpxSw contains one of

the following structures: StkParaGRLPUPX , StkCharGRLPUPX , StkTableGRLPUPX , StkListGRLPUPX .

7. Each of the preceding structures contains one or more of the following: LPUpxPapx , LPUpxChpx ,
LPUpxTapx . Each of the latter structures leads to one or more arrays of Prl that specify properties.

49 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

For more information, see the sections documenting these structures for how to obtain these
arrays.

8. For each array obtained in step 7 that specifies properties of a table, paragraph, or characters,
append to the beginning o f the corresponding array from step 5, if any. The resulting arrays of Prl

are the desired output. Leave the algorithm.

2.4.6.6 Determining Formatting Properties

This section specifies an algorithm for how to combine properties from various sources that influence

the properties of a character position to obtain the final formatting.

Character, paragraph, and table properties of the text at any given character position are specified by
lists of differences from the defaults. Property Storage explains how to determine defaults and how to
apply property differences. This section further specifies which lists of property differences are
applicable and the order in which they apply.

In general, the differences from defaults are specified by one or more styles as well as any directly
applied property modifications. Multiple styles can influence the properties at a given character

position. A table style , for example, can specify paragraph properties that apply to some or all
paragraphs within that table. A paragraph in such a table can itself have a paragraph style, in which
case two different lists of differences modify the properties of said paragraph.

Given character position cp , use the following algorithm to determine the properties of text at cp :

Part 1:

1. Determine defaults for all properties the application is interested in. For further specification, see
Property Storage.

2. Split the properties into three groups based on the objects they apply to: paragraph properties,
character properties, and table properties as specified by Single Property Modifies . These are the
set of properties which w ill be modified throughout the algorithm to arrive at the desired

properties.

3. All versions of the FIB contain exactly one FibRgFcLcb97 though it can be nested in a larger
structure. Read an STSH from offset FibRgFcLcb97.fcStshf in the Table Stream , with size

FibRgFcLcb97 .lcbStshf . From the STSH , obtain an LPStshi and from that obtain an STSHI .

4. Apply the property modifications specified by the ftcAsci , ft cFE and ftcOther members of the
STSHI. Stshif along with the ftcBi member of STSHI if specified.

5. Determine whether cp is in a table or not. For further specification, see Determining Cell
Boundaries . If cp is not in a table, go to step 1 of part 2.

6. Determine the table style that is applied to the innermost row that contains cp as follows:

1. Apply the algorithm from Determining Row Boundaries to obtain the character position of the

TTP mark of the innermost row that contains cp . Call this cpTtp .

2. Apply the algorithm from Direc t Paragraph Formatting on cpTtp .

3. Apply the array of Prl elements that was obtained to the table row and determine the istd of
the table style applied to this table row using sprmTIstd . Call it istdTable . If no table style is
applied, go to step 1 of part 2.

7. Using the algorithm from Determining Properties of a Style , obtain a grpprlPapx , grpprlChpx ,
and a grpprlTapx (if available) from the istdTable . Apply any property modifications specified in

grpprlChpx , grpprlPapx , and grpprlTapx to the character, paragraph, and table properties,
respectively.

50 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

8. Find the position of the inner most cell that contains cp within the innermost table that contains cp
by applying the algorithm from Determining Row Boundaries and Determining Cell Boundaries as

appropriate. Specifically, determine if the innermost cell that contains cp belongs to the f irst row,
first column, last row, or last column of the innermost table that contains cp . Also, determine

whether the innermost cell that contains cp is in an even or an odd horizontal band base d on
horizontal banding applied in grpprlTapx with sprmTCHorzBands and, similarly, if it is in an even
or an odd vertical band based on vertical banding applied in grpprlTapx with sprmTCVertBand s.
Note that if sprmTTlp. grfatl specifies that the top row of the table receives special formatting,
then the top row of the table and any row with sprmTTableHeader applied with a value of 0x01 is
not counted when determining odd or even horizontal banding . Similarly, if sprmTTlp. grfatl
specifies that the logically leftmost column of the table receives special formatting, then that

column is not counted when determining odd or even vertical banding.

9. Next, using the array of Prls obtained in step 6, determin e if additional property differences need
to be applied to cp based on its location in the table as specified by sprmTTlp. grfatl . If additional
property differences need to be applied, look for sprmPCnf s within the grpprlPapx from step 7,
sprmCCnf s within grpprlChpx from step 7, and sprmTCnfs within grpprlTapx from step 7 whose

CNFC, see CNFOperand .cnfc , matches the position information found in step 8. The following table

specifies which CNFC values match which position information.

CNFC
Value Matches é

0x0001 Any cell in the top row or with sprmTTableHeader applied with a value of 0x01 if sprmTTlp. grfatl
specifies that top row of the table receives special formatting.

0x0002 Any cell in the bottom row if sprmTTlp. grfatl specifies that bottom row of the table receives
special formatting and the cell does not match CNFC value 0x0001.

0x0004 Any cell in the logically leftmost column if sprmTTlp. grfatl specifies that the logically leftmost
column receives special formatting.

0x0008 Any cell in the logically rightmost column if sprmTTlp. grfatl specifies that the logically rightmost
column receives special formatting and the cell does not match CNFC value 0x0004.

0x0010 Any cell in an odd numbered vertical band if sprmTTlp. grfatl specifies that odd numbered
vertical bands receive special format ting and the cell does not match CNFC values 0x0004 or
0x0008.

0x0020 Any cell in an even numbered vertical band if sprmTTlp. grfatl specifies that even numbered
vertical bands receive special formatting, and the cell does not match CNFC values 0x0004 or
0x0008.

0x0040 Any cell in an odd numbered horizontal band if sprmTTlp. grfatl specifies that odd numbered
horizontal bands receive special formatting, and the cell does not mat ch CNFC values 0x0001 or
0x0002.

0x0080 Any cell in an even numbered horizontal band if sprmTTlp. grfatl specifies that even numbered
horizontal bands receive special formatting, and the cell does not match CNFC values 0x0001 or
0x0002.

0x0100 The logical ly rightmost cell on the top row of the table if sprmTTlp. grfatl specifies that both the
top row and the logically rightmost column receive special formatting and the cell does not match
CNFC value 0x200.

0x0200 The logically leftmost cell on the top row of the table if sprmTTlp. grfatl specifies that both the
top row and the logically leftmost column receive special formatting.

0x0400 The logically rightmost cell on the bottom row of the table if sprmTTlp. grfatl specifies that both
the bottom row and the logically rightmost column receive special formatting and the cell does
not match CNFC value 0x0100, 0x0200, or 0x0800.

0x0800 The logically leftmost cell on the bottom row of the table if sprmTTlp. grfatl specifies that both
the bottom row and the logical ly leftmost column receive special formatting and the cell does not
match CNFC value 0x0100 or 0x0200.

A single cell position can match multiple CNFC values. For example the logically rightmost cell on
the top row could match all of these CNFC values: 0x0 100, 0x0008, 0x0001. Apply conditional
formatting in the following order.

51 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

CNFC Values Conditional Formatting Type

0x0040 or 0x0080 Odd or even horizontal banding

0x0010 or 0x0020 Odd or even vertical banding

0x0004 or 0x0008 First or last column

0x0001 or 0x0002 First or last row

0x0100, 0x0200, 0x0400, or 0x0800 Corner cell

Apply any property modifications specified in a matching sprmCCnf, if one exists, to the character
properties. Apply any property modifications specified in a matching sprmPCnf , if one exists, to

paragraph properties. Apply any property modifications specified in a matching sprmTCnf, if one
exists, to table properties.

Part 2:

1. Apply the algorithm from Direct Paragraph Formatting up to and including step 4. The remaining
steps o f that algorithm are applied later. Obtain GrpprlAndIstd . Using the algorithm from
Determining Properties of a Style, obtain any paragraph property modifications that are specified
by GrpprlAndIstd . istd .

2. Apply any paragraph property modifications obtained from GrpprlAndIstd . istd in the previous
step. Next, apply any paragraph property modifications found in GrpprlAndIstd .grpprl . Finally,
finish the remaining steps in the algorithm from Direct Paragraph Formatting that was started in
the previous step.

3. If the paragraph that contains cp belongs to a list, apply any further paragraph property
modifications specified by the list. For information about how to determine whether a paragraph

belongs to a list and how to obtain the property modifications specified by the list, see
Determining List Formatting of a Paragraph . At this point the paragraph properties reflect those of
the para graph that contains cp . The remaining steps determine the character properties.

4. Using the algorithm from Determining Properties of a Style, obtain any character property
modifications specified by GrpprlAndIstd . istd from step 1 of part 2 or the value of th e last
sprmPIstdPermute if any in GrpprlAndIstd .grpprl . Apply any character property modifications
obtained from the style to the character properties.

5. Finally, using the algorithm from Direct Cha racter Formatting , obtain any property modifications to
be applied to character properties and apply them.

2.4.7 Application Data For VtHyperlink

The following algorithm specifies how hyperlink properties, as specified in [MS -OSHARED] section
2.3.3.1.18, are associated with content i n a document construct their dwApp field value.

Á If the hyperlink is associated with an OfficeArtFSP shape, as specified in [MS -ODRAW] section

2.2.40, the dwApp value MUST be 0x FFFFFFFF. Otherwise the hyperlink MUST be associated with
a picture, an external link to a picture source, or other document content.

Á If the hyperlink is associated directly with a picture, as opposed to the hyperlink field associated
with the picture, or an external link to a picture source, the dwApp value MUST be set to an

FcCompressed structure that specifies the starting offset of the field result in the WordDocument
Stream associated with the picture. For further specification on field results , see Plcfld .

Á If the hyperlink is associated with any other type of document content , including the hyperlink
field of a WordArt shape or picture, the dwApp value MUST be set to an unsigned 4 -byte integer
that specifies the index into a Plcfld . The specified Plcfld item corresponds to the field begin

%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d
%5bMS-ODRAW%5d.pdf#Section_8560795e77594745838ff7f2ef2f1872

52 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

character of the hyperlink field in the document content associated with the hyperlink property.

The hyperlink properties that have dwApp set to an index into a Plcfld MUST conform to a
specific ordering relative to e ach other when written. They MUST be written within the property

set hyperlink property array VtHyperlinks , as specified in [MS -OSHARED] section 2.3.3.1.21,
grouped according to the document Plcfld to which the indices apply, in the following order:

1. Main Document links.

2. Footnote Document links.

3. Header Document links.

4. Comment Document links.

5. Endnote Document links.

6. Textbox Document links.

7. Header Textbox Document links.

Within these groupings the hyperlink properties MUST be ordered from largest index to
smallest index.

Example:

A document contains two hyperlink fields in the Main Document, and two hyperlink fields in

the Footnote Document. The field indices for the hyperlinks (h1M, and h2M) in the Main
Document are 1 and 4 respectively. The field indices for the hyperlinks (h1F, and h2F) in the
Footnote Document are 0 and 3 respectively.

The hyperl ink properties in this example MUST be written in the order: h2M, h1M, h2F, h1F.

2.5 The File Information Block

2.5.1 Fib

The Fib structure contains information about the document and specifi es the file pointers to various

portions that make up the document.

The Fib is a variable length structure. With the exception of the base portion which is fixed in size,
every section is preceded with a count field that specifies the size of the next section.

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

base (32 bytes)

...

...

csw fibRgW (28 bytes)

...

...

53 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

... cslw

fibRgLw (88 bytes)

...

...

cbRgFcLcb fibRgFcLcbBlob (variable)

...

cswNew fibRgCswNew (variable)

...

base (32 bytes): The FibBase .

csw (2 bytes): An unsigned integer that specifies the count of 16 -bit values corresponding to
fibRgW that follow. MUST be 0x000E.

fibRgW (28 bytes): The FibRgW97 .

cslw (2 bytes): An unsigned integer that specifies the count of 32 -bit values corresponding to
fibRgLw that follow. MUST be 0x0016.

fibRgLw (88 bytes): The FibRgL w97 .

cbRgFcLcb (2 bytes): An unsigned integer that specifies the count of 64 -bit values corresponding to
fibRgFcLcbBlob that follow. This MUST be one of the following values, depending on the value of

nFib .

Value of nFib cbRgFcLcb

0x00C1 0x005D

0x00D9 0x006C

0x0101 0x0088

0x010C 0x00A4

0x0112 0x00B7

fibRgFcLcbBlob (variable): The FibRgFcLcb .

cswNew (2 bytes): An unsigned integer that specifies the count of 16 -bit values corresponding to
fibRgCswNew that follow. This MUST be one of the following values, depending on the value of

nFib .

54 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Value of nFib cswNew

0x00C1 0

0x00D9 0x0002

0x0101 0x0002

0x010C 0x0002

0x0112 0x0005

fibRgCswNew (variable): If cswNew is nonzero, this is fibRgCswNew . Otherwise, it is not present

in the file.

2.5.2 FibBase

The FibBase structure is the fixed -size portion of the Fib.

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

wIdent nFib

unused lid

pnNext A B C D E F G H I J K L M

nFibBack lKey

... envr N O P Q R S

reserved3 reserved4

reserved5

reserved6

wIdent (2 bytes): An unsigned integer that specifies that this is a Word Binary File. This value MUST
be 0xA5EC.

nFib (2 bytes): An unsigned integer that specifies the version number of the file format used.
Superseded by FibRgCswNew .nFibNew if it is present. This value SHOULD <11> be 0x00C1.

unused (2 bytes): This value is undefined and MUST be ignored.

lid (2 bytes): A LID that specifies the install language of the application that is producing the

document. If nFib is 0x00D9 or greater, then any East Asian install lid or any install lid with a base
language of Spa nish, German or French MUST be recorded as 0x0409. If the nFib is 0x0101 or
greater, then any install lid with a base language of Vietnamese, Thai, or Hindi MUST be recorded
as 0x0409.

pnNext (2 bytes): An unsigned integer that specifies the offset in the WordDocument stream of the
FIB for the document which contains all the AutoText items. If this value is 0, there are no
AutoText items attached. Otherwise the FIB is found at file location pnNext ×512. If fGlsy is 1 or

fDot is 0, this value MUST be 0. If pnNext is not 0, each FIB MUST share the same values for

55 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

FibRgFcLcb97 .fcPlcf BteChpx, FibRgFcLcb97 . lcbPlcfBteChpx,
FibRgFcLcb97.fcPlcfBtePapx, FibRgFcLcb97.lcbPlcfBtePapx, and FibRgLw97 .cbMac .

A - fDot (1 bit): Specifies whether this is a document template .

B - fGlsy (1 bit): Specifies whether this is a document that contains only AutoText items (see

FibRgFcLcb97 .fcSttbfGlsy , FibRgFcLcb97 .fcPlcfGlsy and FibRgFcLcb97 .fcSttbGlsyStyle).

C - fComplex (1 bit): Specifi es that the last save operation that was performed on this document
was an incremental save operation.

D - fHasPic (1 bit): When set to 0, there SHOULD <12> be no pictures in the document.

E - cQuickSaves (4 bits): An unsigned integer. If nFib is less than 0x00D9, then cQuickSaves
specifies the number of consecutive times this document was in crementally saved. If nFib is
0x00D9 or greater, then cQuickSaves MUST be 0xF.

F - fEncrypted (1 bit): Specifies whether the document is encrypted or obfuscated as specified in

Encryption and Obf uscation .

G - fWhichTblStm (1 bit): Specifies the Table stream to which the FIB refers. When this value is set
to 1, use 1Table; when this value is set to 0, use 0Table.

H - fReadOnlyRecommended (1 bit): Specifies whether the document author recommended that
the document be opened in read -only mode.

I - fWriteReservation (1 bit): Specifies whether the document has a write - reservation
pas sword .

J - fExtChar (1 bit): This value MUST be 1.

K - fLoadOverride (1 bit): Specifies whether to override the language information and font that are
specified in the paragraph style at istd 0 (t he normal style) with the defaults that are appropriate
for the installation language of the application.

L - fFarEast (1 bit): Specifies whether the installation language of the application that created the

document was an East Asian language .

M - fObfuscated (1 bit): If fEncrypted is 1, this bit specifies whether the document is obfuscated
by using XOR obfuscation (section 2.2.6.1); ot herwise, this bit MUST be ignored.

nFibBack (2 bytes): This value SHOULD <13> be 0x00BF. This value MUST be 0x00BF or 0x00C1.

lKey (4 bytes): If fEncrypted is 1 and fObfuscated is 1, this va lue specifies the XOR obfuscation
(section 2.2.6.1) password verifier. If fEncrypted is 1 and fObfuscated is 0, this value specifies
the size of the EncryptionHeader that is stored at the beginning of the Table stream as

described in Encryption and Obfuscation. Otherwise, this value MUST be 0.

envr (1 byte): This value MUST be 0, and MUST be ignored.

N - fMac (1 bit): This value MUST be 0, and MUST be ignored.

O - fEmptySpecial (1 bit): This value SHOULD <14> be 0 and SHOULD <15> be ignored.

P - fLoadOverridePage (1 bit): Specifies whether to override the section properties for page size,
orientation, and margins with the defaults that are appropriate for the installation language of the

application.

Q - reserved1 (1 bit): This value is undefined and MUST be ignored.

R - reserved2 (1 bit): This value is undefined and MUST be ignored.

56 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

S - fSpare0 (3 bits): This value is und efined and MUST be ignored.

reserved3 (2 bytes): This value MUST be 0 and MUST be ignored.

reserved4 (2 bytes): This value MUST be 0 and MUST be ignored.

reserved5 (4 bytes): This value is undefined and MUST be ignored.

reserved6 (4 bytes): This value is undefined and MUST be ignored.

2.5.3 FibRgW97

The FibRgW97 structure is a variable - length portion of the Fib.

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

reserved1 reserved2

reserved3 reserved4

reserved5 reserved6

reserved7 reserved8

reserved9 reserved10

reserved11 reserved12

reserved13 lidFE

reserved1 (2 bytes): This value is undefined and MUST be ignored.

reserved2 (2 bytes): This value is undefined and MUST be ignored.

reserved3 (2 bytes): This value is undefined and MUST be ignored.

reserved4 (2 bytes): This value is undefined and MUST be ignored.

reserved5 (2 bytes): This v alue SHOULD <16> be zero, and MUST be ignored.

reserved6 (2 bytes): This value SHOULD <17> be zero, and MUST be ignored.

reserved7 (2 bytes): This value SHOULD <18> be zero, and MUST be ignored.

reserved8 (2 bytes): This value SHOULD <19> be zero, and MUST be ignored.

reserved9 (2 bytes): This value SHOULD <20> be zero, and MUST be ignored.

reserved10 (2 bytes): This value SHOULD <21> be zero, and MUST be ignored.

reserved11 (2 bytes): This value SHOULD <22> be zero, and MUST be ignored.

reserved12 (2 byt es): This value SHOULD <23> be zero, and MUST be ignored.

reserved13 (2 bytes): This value SHOULD <24> be zero, and MUST be ig nored.

lidFE (2 bytes): A LID whose meaning depends on the nFib value, which is one of the following.

57 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

nFib value Meaning

0x00C1 If FibBase .fFarEast is "true", this is the LID of the stored style names. Otherwise it MUST
be ignored.

0x00D9
0x0101
0x010C
0x0112

The LID of the stored style names (STD .xstzName)

2.5.4 FibRgLw97

The FibRgLw97 structure is the third section of the FIB . This contains an array of 4 -byte values.

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

cbMac

reserved1

reserved2

ccpText

ccpFtn

ccpHdd

reserved3

ccpAtn

ccpEdn

ccpTxbx

ccpHdrTxbx

reserved4

reserved5

reserved6

reserved7

reserved8

reserved9

58 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

reserved10

reserved11

reserved12

reserved13

reserved14

cbMac (4 bytes): Specifies the count of bytes of those written to the WordDocument stream of the
file that have any meaning. All bytes in the WordDocument stream at offset cbMac and greater
MUST be ignored.

reserved1 (4 bytes): This value is undefined and MUST be ignored.

reserved2 (4 bytes): This value is undefined and MUST be ignored.

ccpText (4 bytes): A signed integer that specifies the count of CPs in the main document . This value
MUST be zero, 1, or greater.

ccpFtn (4 bytes): A signed integer that specifies the cou nt of CPs in the footnote subdocument . This
value MUST be zero, 1, or greater.

ccpHdd (4 bytes): A signed integer that specifies the count of CPs in the header subdocument . This
value MUST be zero, 1, or greater.

reserved3 (4 bytes): This value MUST be zero and MUST be ignored.

ccpAtn (4 bytes): A signed integer that specifies the count of CP s in the comment subdocument .
This value MUST be zero, 1, or greater.

ccpEdn (4 bytes): A signed integer that specifies the count of CPs in the endnote subdocument . This
value MUST be zero, 1, or greater.

ccpTxbx (4 bytes): A signed integer that specifies the count of CPs in the textbox subdocument of
the main document . This value MUST be zero, 1, or greater.

ccpHdrTxbx (4 bytes): A signed integer that specifies the count of CPs in the textbox subdocument
of the header . This value MUST be zero, 1, or greater.

reserved4 (4 bytes): This value is undefined and MUST be ignored.

reserved5 (4 bytes): This value is undefined and MUST be ignored.

reserved6 (4 bytes): This value MUST be equal or less than the number of data elements in

PlcBteChpx , as specified by FibRgFcLcb97 .fcPlcfBteChpx and
FibRgFcLcb97 . lcbPlcfBteChpx . This value MUST be ignored.

reserved7 (4 bytes): This value is undefined and MUST be ignored

re served8 (4 bytes): This value is undefined and MUST be ignored

reserved9 (4 bytes): This value MUST be less than or equal to the number of data elements in
PlcBtePapx , as specified by FibRgFcLcb97 .fcPlcfBtePapx and

FibRgFcLcb97 . lcbPlcfBtePapx . This value MUST be ignored.

reserved10 (4 bytes): This value is undefined and MUST be ignored.

59 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

reserved11 (4 bytes): This value is undefined and MUST be ignored.

reserved12 (4 bytes): This value SHOULD <25> be zero, and MUST be ignored.

reserved13 (4 bytes): This value MUST be zero and MUST be ignored.

reserved14 (4 bytes): This value MUST be zero and MUST be ignored.

2.5.5 FibRgFcLcb

The FibRgFcLcb structure specifies the file offsets and byte counts for various portions of the data in
the document. The structure of FibRgFcLcb depends on th e value of nFib , which is one of the

following.

Value Meaning

0x00C1 fibRgFcLcb97

0x00D9 fibRgFcLcb2000

0x0101 fibRgFcLcb2002

0x010C fibRgFcLcb2003

0x0112 fibRgFcLcb2007

2.5.6 FibRgFcLcb97

The FibRgFcLcb97 structure is a variable - length portion of the Fib.

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

fcStshfOrig

lcbStshfOrig

fcStshf

lcbStshf

fcPlcffndRef

lcbPlcffndRef

fcPlcffndTxt

lcbPlcffndTxt

fcPlcfandRef

lcbPlcfandRef

fcPlcfandTxt

60 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

lcbPlcfandTxt

fcPlcfSed

lcbPlcfSed

fcPlcPad

lcbPlcPad

fcPlcfPhe

lcbPlcfPhe

fcSttbfGlsy

lcbSttbfGlsy

fcPlcfGlsy

lcbPlcfGlsy

fcPlcfHdd

lcbPlcfHdd

fcPlcfBteChpx

lcbPlcfBteChpx

fcPlcfBtePapx

lcbPlcfBtePapx

fcPlcfSea

lcbPlcfSea

fcSttbfFfn

lcbSttbfFfn

fcPlcfFldMom

lcbPlcfFldMom

fcPlcfFldHdr

lcbPlcfFldHdr

61 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcPlcfFldFtn

lcbPlcfFldFtn

fcPlcfFldAtn

lcbPlcfFldAtn

fcPlcfFldMcr

lcbPlcfFldMcr

fcSttbfBkmk

lcbSttbfBkmk

fcPlcfBkf

lcbPlcfBkf

fcPlcfBkl

lcbPlcfBkl

fcCmds

lcbCmds

fcUnused1

lcbUnused1

fcSttbfMcr

lcbSttbfMcr

fcPrDrvr

lcbPrDrvr

fcPrEnvPort

lcbPrEnvPort

fcPrEnvLand

lcbPrEnvLand

fcWss

62 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

lcbWss

fcDop

lcbDop

fcSttbfAssoc

lcbSttbfAssoc

fcClx

lcbClx

fcPlcfPgdFtn

lcbPlcfPgdFtn

fcAutosaveSource

lcbAutosaveSource

fcGrpXstAtnOwners

lcbGrpXstAtnOwners

fcSttbfAtnBkmk

lcbSttbfAtnBkmk

fcUnused2

lcbUnused2

fcUnused3

lcbUnused3

fcPlcSpaMom

lcbPlcSpaMom

fcPlcSpaHdr

lcbPlcSpaHdr

fcPlcfAtnBkf

lcbPlcfAtnBkf

63 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcPlcfAtnBkl

lcbPlcfAtnBkl

fcPms

lcbPms

fcFormFldSttbs

lcbFormFldSttbs

fcPlcfendRef

lcbPlcfendRef

fcPlcfendTxt

lcbPlcfendTxt

fcPlcfFldEdn

lcbPlcfFldEdn

fcUnused4

lcbUnused4

fcDggInfo

lcbDggInfo

fcSttbfRMark

lcbSttbfRMark

fcSttbfCaption

lcbSttbfCaption

fcSttbfAutoCaption

lcbSttbfAutoCaption

fcPlcfWkb

lcbPlcfWkb

fcPlcfSpl

64 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

lcbPlcfSpl

fcPlcftxbxTxt

lcbPlcftxbxTxt

fcPlcfFldTxbx

lcbPlcfFldTxbx

fcPlcfHdrtxbxTxt

lcbPlcfHdrtxbxTxt

fcPlcffldHdrTxbx

lcbPlcffldHdrTxbx

fcStwUser

lcbStwUser

fcSttbTtmbd

lcbSttbTtmbd

fcCookieData

lcbCookieData

fcPgdMotherOldOld

lcbPgdMotherOldOld

fcBkdMotherOldOld

lcbBkdMotherOldOld

fcPgdFtnOldOld

lcbPgdFtnOldOld

fcBkdFtnOldOld

lcbBkdFtnOldOld

fcPgdEdnOldOld

lcbPgdEdnOldOld

65 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcBkdEdnOldOld

lcbBkdEdnOldOld

fcSttbfIntlFld

lcbSttbfIntlFld

fcRouteSlip

lcbRouteSlip

fcSttbSavedBy

lcbSttbSavedBy

fcSttbFnm

lcbSttbFnm

fcPlfLst

lcbPlfLst

fcPlfLfo

lcbPlfLfo

fcPlcfTxbxBkd

lcbPlcfTxbxBkd

fcPlcfTxbxHdrBkd

lcbPlcfTxbxHdrBkd

fcDocUndoWord9

lcbDocUndoWord9

fcRgbUse

lcbRgbUse

fcUsp

lcbUsp

fcUskf

66 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

lcbUskf

fcPlcupcRgbUse

lcbPlcupcRgbUse

fcPlcupcUsp

lcbPlcupcUsp

fcSttbGlsyStyle

lcbSttbGlsyStyle

fcPlgosl

lcbPlgosl

fcPlcocx

lcbPlcocx

fcPlcfBteLvc

lcbPlcfBteLvc

dwLowDateTime

dwHighDateTime

fcPlcfLvcPre10

lcbPlcfLvcPre10

fcPlcfAsumy

lcbPlcfAsumy

fcPlcfGram

lcbPlcfGram

fcSttbListNames

lcbSttbListNames

fcSttbfUssr

lcbSttbfUssr

67 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcStshfOrig (4 bytes): This value is undefined and MUST be ignored.

lcbStshfOrig (4 bytes): This value is undefined and MUST be ignored.

fcStshf (4 bytes): An unsigned integer that specifies an offset in the Table Stream . An STSH that
specifies the style sheet for this document begins at this offset.

lcbStshf (4 bytes): An unsigned integer that specifies the size, in bytes, of the STSH that begins at
offset fcStshf in the Table Stream. This MUST be a nonzero value.

fcPlcffndRef (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcffndRef begins at this offset and specifies the locations of footnote references in the Main
Document , and whether those references use auto -numbering or custom symbols. If
lcbPlcffndRef is zero, fcPlcffndRef is undefined and MUST be ignored.

lcbPlcffndRef (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcffndRef

that begins at offset fcPlcffndRef in the Table Stream.

fcPlcffndTxt (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcffndTxt begins at t his offset and specifies the locations of each block of footnote text in the
Footnote Document . If lcbPlcffndTxt is zero, fcPlcffndTxt is undefined and MUST be ignored.

lcbPlcffndTxt (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcffndTxt
that begins at offset fcPlcffndTxt in the Table Stream.

lcbPlcffndTxt MUST be zero if FibRgLw97 .ccpFtn is zero, and MUST b e nonzero if
FibRgLw97.ccpFtn is nonzero.

fcPlcfandRef (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcfandRef begins at this offset and specifies the dates, user initials, and locations of comments
in the Main Document. If lcbPlcfandRef is zero, fcPlcfandRef is undefined and MUST be ignored.

lcbPlcfandRef (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcfandRef at
offset fcPlcfandRef in the Table Stream.

fcPlcfandTxt (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcfandTxt begins at this offset and specifies the locations of comment text ranges in the
Comment Document . If lcbPlcfandTxt is zero, fcPlcfandTxt is undefined, and MUST be ignored.

lcbPlcfandTxt (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcfandTx t at
offset fcPlcfandTxt in the Table Stream.

lcbPlcfandTxt MUST be zero if FibRgLw97.ccpAtn is zero, and MUST be nonzero if
FibRgLw97.ccpAtn is nonzero.

fcPlcfSed (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A PlcfSed
begins at this offset and specifies the locations of property lists for each section in the Main
Document. If lcbPlcfSed is zero, fcPlcfSed is undefined and MUST be ignored.

lcbPlcfSed (4 bytes): An un signed integer that specifies the size, in bytes, of the PlcfSed that

begins at offset fcPlcfSed in the Table Stream.

fcPlcPad (4 bytes): This value is undefined and MUST be ignored.

lcbPlcPad (4 bytes): This value MUST be zero, and MUST be ignored.

fcPlcfPhe (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plc begins
at this offset and specifies version -specific information about paragraph height. This Plc SHOULD
NOT<26> be emitted and SHOULD <27> be ignored.

68 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

lcbPlcfPhe (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plc at offset
fcPlcfPhe in the Table Stream.

fcSttbfGlsy (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A SttbfGlsy
that contains information about the AutoText items that are defined in this document begins at

this offset.

lcbSttbfGlsy (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbfGlsy at
offset fcSttbfGlsy in the Table Stream. If base.fGlsy of the Fib that contains this FibRgFcLcb97
is zero, this value MUST be zero.

fcPlcfGlsy (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A PlcfGlsy
that contains information about the AutoText items that are defined in this document begins at
this offset.

lcbPlcfGlsy (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcfGlsy at offset
fcPlcfGlsy in the Table Stream. If base.fGlsy of the Fib that contains this FibRgFcLcb97 is zero,
this value MUST be zero.

fcPlcfHdd (4 bytes): An unsigned integer that specifies the offset in the Table Stream where a
Plcfhdd begi ns. The Plcfhdd specifies the locations of each block of header/footer text in the
WordDocument Stream . If lcbPlcfHdd is 0, fcPlcfHdd is undefined and MUST be ignored.

lcbPlcfHdd (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfhdd at offset
fcPlcfHdd in the Table Stream. If there is no Plcfhdd , this value MUST be zero. A Plcfhdd MUST
exist if FibRgLw97 .ccpHdd indicates that there are characters in the Header Document (that is,
if FibRgLw97 .ccpHdd is greater than 0). Otherwise, the Plcfhdd MUST NOT exist.

fcPlcfBteChpx (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcBteChpx begins at the offset. fcPlcfBteChpx MUST be greater than zero, and MUST be a valid
offset in the Table Stream.

lcbPlcfBteChpx (4 bytes): An unsigned integer that specifies the size, in bytes, o f the PlcBteChpx
at offset fcPlcfBteChpx in the Table Stream. lcbPlcfBteChpx MUST be greater than zero.

fcPlcfBtePapx (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcBtePapx begins at the offset. fcPlcfBtePapx MUST be greater than zero, and MUST be a valid
offset in the Table Stream.

lcbPlcfBtePapx (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcBtePapx
at offset fcPlcfBtePapx in the Tab le Stream. lcbPlcfBteChpx MUST be greater than zero.

fcPlcfSea (4 bytes): This value is undefined and MUST be ignored.

lcbPlcfSea (4 bytes): This value MUST be zero, and MUST be ignored.

fcSttbfFfn (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An SttbfFfn
begins at this offset. This table specifies the fonts that are used in the document. If lcbSttbfFfn is
0, fcSttbfFfn is undefined and MUST be ignored.

lcbSttbfFfn (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbfFfn at offset

fcSttbfFfn in the Table Stream.

fcPlcfFldMom (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfld
begins at this offset and specifies the locations of field characters in the Main Document. All CPs in
this Plcfld MUST be greater than or equal to 0 and less than or equal to Fib RgLw97.ccpText . If
lcbPlcfFldMom is zero, fcPlcfFldMom is undefined and MUST be ignored.

lcbPlcfFldMom (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfld at
offset fcPlcfFldMom in the Table Stream.

69 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcPlcfFldHdr (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfld
begins at this offset and specifies the locations of field characters in the Header Document. All CPs

in this Plcfld are relative to the starting position of the Header Document. All C Ps in this Plcfld
MUST be greater than or equal to zero and less than or equal to FibRgLw97 .ccpHdd . If

lcbPlcfFldHdr is zero, fcPlcfFldHdr is undefined and MUST be ignored.

lcbPlcfFldHdr (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfld at offset
fcPlcfFldHdr in the Table Stream.

fcPlcfFldFtn (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfld
begins at this offset and specifies the locations of field characters in the Footnote Document. All
CPs in this Plcfld are relative to the starting position of the Footnote Document. All CPs in this
Plcfld MUST be greater than or equal to zero and less than or equal to FibRgLw97.ccpFtn . If

lcbPlcfFldFtn is zero, fcPlcfFldFtn is undefined, and MUST be igno red.

lcbPlcfFldFtn (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfld at offset
fcPlcfFldFtn in the Table Stream.

fcPlcfFldAtn (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfld
begins at this offset and specifies the locations of field characters in the Comment Document. All
CPs in this Plcfld are relative to the starting position of the Comment Document. All CPs in this

Plcfld MUST be greater than or equal to zero and less than or equal to Fi bRgLw97.ccpAtn . If
lcbPlcfFldAtn is zero, fcPlcfFldAtn is undefined and MUST be ignored.

lcbPlcfFldAtn (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfld at offset
fcPlcfFldAtn in the Table Stream.

fcPlcfFldMcr (4 bytes): This value is undefined and MUST be ignored.

lcbPlcfFldMcr (4 bytes): This value MUST be zero, and MUST be ignored.

fcSttbfBkmk (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An

SttbfBkmk that contains the names of the bookmarks in the document begins at this offset. If
lcbSttbfBkmk is zero, fcSttbfBkmk is undefi ned and MUST be ignored.

This SttbfBkmk is parallel to the Plcfbkf at offset fcPlcfBkf in the Table Stream. Each string
specifies the name of the bookmark that is associated with the data element which is located at
the same offset in that Plcfbkf . For this reason, the SttbfBkmk that begins at offset
fcSttbfBkmk , and the Plcfbkf that begins at offset fcPlcfBkf , MUST contain the same number of
elements.

lcbSttbfBkmk (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbfBkmk at
offset fcSttbfBkmk .

fcPlcfBkf (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfbkf that
contains information about the standard bookmarks in the document begins at t his offset. If
lcbPlcfBkf is zero, fcPlcfBkf is undefined and MUST be ignored.

Each data element in the Plcfbkf is associated, in a one - to -one correlation, with a data element in

the Plcfbkl at of fset fcPlcfBkl . For this reason, the Plcfbkf that begins at offset fcPlcfBkf , and

the Plcfbkl that begins at offset fcPlcfBkl , MUST contain the same number of data elements. This
Plcfbkf is parallel to the SttbfBkmk at offset fcSttbfBkmk in the Table Strea m. Each data
element in the Plcfbkf specifies information about the bookmark that is associated with the
element which is located at the same offset in that SttbfBkmk . For this reason, the Plcfbkf that
begins at offset fcPlcfBkf , and the SttbfBkmk that beg ins at offset fcSttbfBkmk , MUST contain
the same number of elements.

The largest value that a CP marking the start or end of a standard bookmark is allowed to have is
the CP representing the end of all document parts .

70 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

lcbPlcfBkf (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkf at offset
fcPlcfBkf .

fcPlcfBkl (4 bytes): An unsigned in teger that specifies an offset in the Table Stream. A Plcfbkl that
contains information about the standard bookmarks in the document begins at this offset. If

lcbPlcfBkl is zero, fcPlcfBkl is undefined and MUST be ignored.

Each data element in the Plcfkl is associated, in a one - to -one correlation, with a data element in
the Plcfbkf at offset fcPlcfBkf . For this reason, the Plcfbkl that begins at offset fcPlcfBkl , and
the Plcfbkf that begins at offset fcPlcfBkf , MUST contain the same number of data elements .

The largest value that a CP marking the start or end of a standard bookmark is allowed to have is
the value of the CP representing the end of all document parts.

lcbPlcfBkl (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkl at offset

fcPlcfBkl .

fcCmds (4 bytes): An unsigned integer that specifies the offset in the Table Stream of a Tcg that

specifies command - related customizations. If lcbCmds is zero, fcCmds is unde fined and MUST be
ignored.

lcbCmds (4 bytes): An unsigned integer that specifies the size, in bytes, of the Tcg at offset
fcCmds .

fcUnused1 (4 bytes): This value is undefined and MUST be ignored.

lcbUnused1 (4 bytes): This value MUST be zero, and MUST be i gnored.

fcSttbfMcr (4 bytes): This value is undefined and MUST be ignored.

lcbSttbfMcr (4 bytes): This value MUST be zero, and MUST be ignored.

fcPrDrvr (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The PrDrvr ,
which contains printer driver information (the names of drivers, port, and so on), begins at this

offset. If lcbPrDrvr is zero, fcPrDrvr is undefined and MUST be ignored.

lcbPrDrvr (4 bytes) : An unsigned integer that specifies the size, in bytes, of the PrDrvr at offset
fcPrDrvr .

fcPrEnvPort (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
PrEnvPort that is the print environment in portrait mode begins at this offset. If lcbPrEnvPort is
zero, fcPrEnvPort is undefined and MUST be ignored.

lcbPrEnvPort (4 bytes): An unsigned integer that specifies the size, in bytes, of the PrEnvPort at
offset fcPrEnvP ort .

fcPrEnvLand (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
PrEnvLand that is the print environment in landscape mode begins at this offset. If
lcbPrEnvLand is zero, fcPrEnvLand is undefined and MUST be ignored.

lcbPrEnvLand (4 bytes): An unsigned integer that specifies the size, in bytes, of the PrEnvLand at

offset fcPrEnvLand .

fcWss (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Selsf begins at

this offset and specifies the last selection that was made in the Main Document. If lcbWss is zero,
fcWss is undefined and MUST be ignored.

lcbWss (4 bytes): An unsigned integer that specifies the size, in bytes, of the Selsf at offset fcWss .

fcDop (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Dop begins at
this offset.

71 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

lcbDop (4 bytes): An unsigned integer that specifies the size, in bytes, of the Dop at fcDop . This
value MUST NOT be zero.

fcSttbfAssoc (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
SttbfAssoc that contains strings that are associated with the document begins at this offset.

lcbSttbfAssoc (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbfAssoc at
offset fcSttbfAssoc . This value MUST NOT be zero.

fcClx (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Clx begins at
this offset.

lcbClx (4 bytes): An unsigned integer that specifies the size, in bytes, of the Clx at offset fcClx in
the Table Stream. This value MUST be greater than zero.

fcPlcfPgdFtn (4 bytes): This value is undefined and MUST be ignored.

lcbPlcfPgdFtn (4 bytes): This value MUST be zero, and MUST be ignored.

fcAutosaveSource (4 bytes): This value is undefined and MUST be ignored.

lcbAutosaveSource (4 bytes): This value MUST be zero and MUST be ignored.

fcGrpXstAtnOwners (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
array of XSTs begins at this offset. The value of cch for all XSTs in this array MUST be less than
56. The number of entries in this array is limited to 0x7FFF. This array contains the names of

authors of comments in the document. The names in this array MUST be unique. If no comments
are defined, lcbGrpXstAtnOwners and fcGrpXstAtnOwners MUST be zero and MUST be
ignored. If any comments are in the document, fcGrpXstAtnOwners MUST point to a valid array
of XSTs.

lcbGrpXstAtnOwners (4 bytes): An unsigned integer that specifies the size, in bytes, of the XST
array at offset fcGrpXstAtnOwners in the Table Stream.

fcSttbfAtnBkmk (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An

SttbfAtnBkmk that contains information about the annotation bookmarks in the document
begins at this offset. If lcbSttbfAtnBkmk is zero, fcSttbfAtnBkmk is undefined and MUST b e
ignored.

The SttbfAtnBkmk is parallel to the Plcfbkf at offset fcPlcfAtnBkf in the Table Stream. Each
element in the SttbfAtnBkmk specifies information about the bookmark which is associated with
the data element that is located at the same offset in th at Plcfbkf, so the SttbfAtnBkmk beginning
at offset fcSttbfAtnBkmk and the Plcfbkf beginning at offset fcPlcfAtnBkf MUST contain the

same number of elements. An additional constraint upon the number of elements in the
SttbfAtnBkmk is specified in the descr iption of fcPlcfAtnBkf .

lcbSttbfAtnBkmk (4 bytes): An unsigned integer that specifies the size, in bytes, of the
SttbfAtnBkmk at offset fcSttbfAtnBkmk .

fcUnused2 (4 bytes): This value is undefined and MUST be ignored.

lcbUnused2 (4 bytes): This value MU ST be zero, and MUST be ignored.

fcUnused3 (4 bytes): This value is undefined and MUST be ignored.

lcbUnused3 (4 bytes): This value MUST be zero, and MUST be ignored.

fcPlcSpaMom (4 bytes): An unsigned integer that specifies an offset in the Table Strea m. A PlcfSpa
begins at this offset. The PlcfSpa contains shape information for the Main Document. All CPs in this
PlcfSpa are relative to the starting position of the Main Document and MUST be greater than or
equal to zero and less than or equal to ccpText in FibRgLw97. The final CP is undefined and MUST

72 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

be ignored, though it MUST be greater than the previous entry. If there are no shapes in the Main
Document, lcbPlcSpaMom and fcPlc SpaMom MUST be zero and MUST be ignored. If there are

shapes in the Main Document, fcPlcSpaMom MUST point to a valid PlcfSpa structure.

lcbPlcSpaMom (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcfSpa at

offset fcPlcSpaMom .

fcPlcSpaHdr (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A PlcfSpa
begins at this offset. The PlcfSpa contains shape information for the Header Document. All CPs in
this PlcfSpa are relative to the starting position of the Header Document and MUST be greater
than or equal to zero and less than or equal to ccpHdd in FibRgLw97. The final CP is undefined
and MUST be ignored, though this value MUST be greater than the previous entry. If there are no
shapes in the Header Document , lcbPlcSpaHdr and fcPlcSpaHdr MUST both be zero and MUST

be ignored. If there are shapes in the Header Document, fcPlcSpaHdr MUST point to a valid
PlcfSpa structure.

lcbPlcSpaHdr (4 bytes): An unsigned integer that specifies the size, in bytes, of the Pl cfSpa at the
offset fcPlcSpaHdr .

fcPlcfAtnBkf (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfbkf
that contains information about annotation bookmarks in the document begins at this offset. If

lcbPlcfAtnBkf is zero, fcPl cfAtnBkf is undefined and MUST be ignored.

Each data element in the Plcfbkf is associated, in a one - to -one correlation, with a data element in
the Plcfbkl at offset fcPlcfAtnBkl . For this reason, the Plcfbkf that begins at offset
fcPlcfAtnBkf , and the Plc fbkl that begins at offset fcPlcfAtnBkl , MUST contain the same
number of data elements. The Plcfbkf is parallel to the SttbfAtnBkmk at offset fcSttbfAtnBkmk
in the Table Stream. Each data element in the Plcfbkf specifies information about the bookmark
whic h is associated with the element that is located at the same offset in that SttbfAtnBkmk. For

this reason, the Plcfbkf that begins at offset fcPlcfAtnBkf , and the SttbfAtnBkmk that begins at
offset fcSttbfAtnBkmk , MUST contain the same number of elements.

The CP range of an annotation bookmark MUST be in the Main Document part.

lcbPlcfAtnBkf (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkf at
offset fcPlcfAtnBkf .

fcPlcfAtnBkl (4 bytes): An unsigned integer that specifies an o ffset in the Table Stream. A Plcfbkl
that contains information about annotation bookmarks in the document begins at this offset. If

lcbPlcfAtnBkl is zero, then fcPlcfAtnBkl is undefined and MUST be ignored.

Each data element in the Plcfbkl is associated, in a one - to -one correlation, with a data element in
the Plcfbkf at offset fcPlcfAtnBkf . For this reason, the Plcfbkl that begins at offset
fcPlcfAtnBkl , and the Plcfbkf that begins at offset fcPlcfAtnBkf , MUST contain the same
number of dat a elements.

The CP range of an annotation bookmark MUST be in the Main Document part.

lcbPlcfAtnBkl (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkl at
offset fcPlcfAtnBkl .

fcPms (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Pms , which
contains the current state of a print merge operation, begins at this offset. If lcbPms is zero,
fcPms is undefined and MUST be ignored.

lcbPms (4 byte s): An unsigned integer which specifies the size, in bytes, of the Pms at offset
fcPms .

fcFormFldSttbs (4 bytes): This value is undefined and MUST be ignored.

73 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

lcbFormFldSttbs (4 bytes): This value MUST be zero, and MUST be ignored.

fcPlcfendRef (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcfendRef that begins at this offset specifies the locations of endnote references in the Main
Document and whether those refe rences use auto -numbering or custom symbols. If

lcbPlcfendRef is zero, fcPlcfendRef is undefined and MUST be ignored.

lcbPlcfendRef (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcfendRef
that begins at offset fcPlcfendRef in t he Table Stream.

fcPlcfendTxt (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcfendTxt begins at this offset and specifies the locations of each block of endnote text in the
Endnote Document . If lcbPlcfendTxt is zero, fcPlcfendTxt is undefined and MUST be ignored.

lcbPlcfendTxt (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfe ndTxt

that begins at offset fcPlcfendTxt in the Table Stream.

lcbPlcfendTxt MUST be zero if FibRgLw97.ccpEdn is zero, and MUST be nonzero if

FibRgLw97.ccpEdn is nonzero.

fcPlcfFldEdn (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfld
begins at this offset and specifies the locations of field characters in the Endnote Document. All
CPs in this Plcfld are relative to the starting position of the Endnote Document. All CPs in this

Plcfld MUST be greater than or equal to ze ro and less than or equal to FibRgLw97.ccpEdn . If
lcbPlcfFldEdn is zero, fcPlcfFldEdn is undefined and MUST be ignored.

lcbPlcfFldEdn (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfld at offset
fcPlcfFldEdn in the Table Stream .

fcUnused4 (4 bytes): This value is undefined and MUST be ignored.

lcbUnused4 (4 bytes): This value MUST be zero, and MUST be ignored.

fcDggInfo (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An

OfficeArtContent that contains information about the drawings in the document begins at this
offset.

lcbDggInfo (4 bytes): An unsigned integer that specifies the size, in bytes, of the OfficeArtContent
at the offset fcDggIn fo . If lcbDggInfo is zero, there MUST NOT be any drawings in the
document.

fcSttbfRMark (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
SttbfRMark that contains th e names of authors who have added revision marks or comments to

the document begins at this offset. If lcbSttbfRMark is zero, fcSttbfRMark is undefined and
MUST be ignored.

lcbSttbfRMark (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbfRMark
at the offset fcSttbfRMark .

fcSttbfCaption (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An

SttbfCaption that contains information about the captions that are defined in this document

begins at this offset. If lcbSttbfCaption is zero, fcSttbfCaption is undefined and MUST be
ignor ed. If this document is not the Normal template , this value MUST be ignored.

lcbSttbfCaption (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbfCaption
at offset fcSttbfCaption in the Table Stream. If base.fDot of the Fib that contains this
FibRgFcLcb97 is zero, this value MUST be zero.

fcSttbfAutoCaption (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
SttbfAutoCaption that contains information about the AutoCaption strings defined in this

74 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

document begins at this offset. If lcbSttbfAuto Caption is zero, fcSttbfAutoCaption is undefined
and MUST be ignored. If this document is not the Normal template, this value MUST be ignored.

lcbSttbfAutoCaption (4 bytes): An unsigned integer that specifies the size, in bytes, of the
SttbfAutoCaption at offset fcSttbfAutoCaption in the Table Stream. If base.fDot of the Fib

that contains this FibRgFcLcb97 is zero, this MUST be zero.

fcPlcfWkb (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A PlcfWKB
that contains information about all master documents and subdocuments begins at this offset.

lcbPlcfWkb (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcfWKB at
offset fcPlcfWkb in the Table Str eam. If lcbPlcfWkb is zero, fcPlcfWkb is undefined and MUST
be ignored.

fcPlcfSpl (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfspl ,

which specifies the state of the spell checker for each text range, begins at this offset. If
lcbPlcfSpl is zero, then fcPlcfSpl is undefined and MUST be ignored.

lcbPlcfSpl (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfspl that begins
at offset fcPlc fSpl in the Table Stream.

fcPlcftxbxTxt (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcftxbxTxt begins at this offset and specifies which ranges of text are cont ained in which

textboxes. If lcbPlcftxbxTxt is zero, fcPlcftxbxTxt is undefined and MUST be ignored.

lcbPlcftxbxTxt (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcftxbxTxt
that begins at offset fcPlcftxbxTxt in the Table Stream .

lcbPlcftxbxTxt MUST be zero if FibRgLw97.ccpTxbx is zero, and MUST be nonzero if
FibRgLw97.ccpTxbx is nonzero.

fcPlcfFldTxbx (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfld
begins at this offset and specifies the lo cations of field characters in the Textbox Document . All

CPs in this Plcfld are relative to the starting position of the Textbox Document. All CPs in this

Plcfld MUST be greater than or equal to z ero and less than or equal to FibRgLw97.ccpTxbx . If
lcbPlcfFldTxbx is zero, fcPlcfFldTxbx is undefined and MUST be ignored.

lcbPlcfFldTxbx (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfld at
offset fcPlcfFldTxbx in the Table Stream.

fcPlcfHdrtxbxTxt (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcfHdrtxbxTxt begins at this offset and specifies which ranges of text are contained in whi ch

header textboxes .

lcbPlcfHdrtxbxTxt (4 bytes): An unsigned integer that specifies the size, in bytes, of the
PlcfHdrtxbxTxt that begins at offset fcPlcfHdrtxbxTxt in the Table Stream.

lcbPlcfH drtxbxTxt MUST be zero if FibRgLw97.ccpHdrTxbx is zero, and MUST be nonzero if
FibRgLw97.ccpHdrTxbx is nonzero.

fcPlcffldHdrTxbx (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A

Plcfld begins at this offset and specifies the l ocations of field characters in the Header Textbox
Document. All CPs in this Plcfld are relative to the starting position of the Header Textbox
Document. All CPs in this Plcfld MUST be greater than or equal to zero and less than or equal to
FibRgLw97.ccpHd rTxbx . If lcbPlcffldHdrTxbx is zero, fcPlcffldHdrTxbx is undefined, and
MUST be ignored.

lcbPlcffldHdrTxbx (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfld at
offset fcPlcffldHdrTxbx in the Table Stream.

75 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcStwUser (4 bytes): An unsigned integer that specifies an offset into the Table Stream. An
StwUser that specifies the user -defined variables and VBA digital signature , as specified by

[MS -OSHARED] section 2.3.2, begins at this offset. If lcbStwUser is zero, fcStw User is
undefined and MUST be ignored.

lcbStwUser (4 bytes): An unsigned integer that specifies the size, in bytes, of the StwUser at offset
fcStwUser .

fcSttbTtmbd (4 bytes): An unsigned integer that specifies an offset into the Table Stream. A
SttbTtmbd begins at this offset and specifies information about the TrueType font s that are
embedded in the document. If lcbSttbTtmbd is zero, fc SttbTtmbd is undefined and MUST be
ignored.

lcbSttbTtmbd (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbTtmbd at

offset fcSttbTtmbd .

fcCookieData (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An RgCdb
begins at this offset. If lcbCookieData is zero, fcCookieData is undefined and MUST be ignored.

Otherwise, fcCookieData MAY< 28> be ignored.

lcbCookieData (4 bytes): An unsigned integer that specifies the size, in bytes, of the RgCdb at
offset fcCookieData in the Table Stream.

fcPgdMotherOldOld (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
depr ecated document page layout cache begins at this offset. Information SHOULD NOT <29> be
emitted at this offset and SHOULD <30> be ignored. If lcbPgdMotherOldOld is zero,
fcPgdMotherOldOld is undefined and MUST be ignored.

lcbPgdMotherOldOld (4 bytes): An unsigned integer that specifies the size, in bytes, of the
deprecated document page layout cache at offset fcPgdMotherOldOld in the Table Stream.

fcBkdMotherOldOld (4 bytes): An unsigned integer that specifies an offset in the Table Stream.

Deprecated document text flow break cache begins at this offset. Information SHOULD NOT <31>
be emitted at this offset and SHOULD <32> be ignored. If lcbBkdMotherOldOld is zero,

fcBkdMotherOldOld is undefined and MUST be ignored.

lcbBkdMotherOldOld (4 bytes): An un signed integer that specifies the size, in bytes, of the
deprecated document text flow break cache at offset fcBkdMotherOldOld in the Table Stream.

fcPgdFtnOldOld (4 bytes): An unsigned integer that specifies an offset in the Table Stream.
Deprecated footn ote layout cache begins at this offset. Information SHOULD NOT <33> be emitted

at this offset and SHOULD <34> be ignored. If l cbPgdFtnOldOld is zero, fcPgdFtnOldOld is
undefined and MUST be ignored.

lcbPgdFtnOldOld (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
footnote layout cache at offset fcPgdFtnOldOld in the Table Stream.

fcBkdFtnOldOld (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated footnote text flow break cache begins at this offset. Information SHOULD NOT <35> be

emitted at thi s offset and SHOULD <36> be ignored. If lcbBkdFtnOldOld is zero,

fcBkdFtnOldOld is undefined and MUST be ignored.

lcbBkdFtnOldOld (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
footnote text flow break cache at offset fcBkdFtnOldOld in the Table Stream.

fcPgdEdnOldOld (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated endnote layout cache begins at this offset. Information SHOULD NOT <37> be emitted
at this offset and SHOULD <38> be ignored. If lcbPgdEdnOldOld is zero, fcPgdEdnOldOld is

undefined and MUST be ignored.

%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d

76 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

lcbPgdEdnOldOld (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
endnote layout cache at offset fcPgdEdnOldOld in the Table Stream.

fcBkdEdnOldOld (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated endnote text flow break cache begins at this offset. Information SHOULD NOT <39> be

emitted at this offset and SHOULD <40> be ignored. If lcbBkdEdnOldOld is zero,
fcBkdEdnOldOld is undefined and MUST be ignored.

lcbBkdEdnOldOld (4 bytes): An unsigned integer that specifies t he size, in bytes, of the deprecated
endnote text flow break cache at offset fcBkdEdnOldOld in the Table Stream.

fcSttbfIntlFld (4 bytes): This value is undefined and MUST be ignored.

lcbSttbfIntlFld (4 bytes): This value MUST be zero, and MUST be ignored.

fcRouteSlip (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A

RouteSlip that specifies the route slip for this document begins at this offset. This value
SHOULD<41> be ignored.

lcbRouteSlip (4 bytes): An unsigned integer that specifies the size, in bytes, of the RouteSlip at
offset fcRouteSlip in the Table Stream.

fcSttbSavedBy (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
SttbSavedBy that specifies the save history of this document begins at this offset. This value

SHOULD<42> be ignored.

lcbSttbSavedBy (4 bytes): An unsigned integer that specifies the size, in bytes, of the
SttbSavedBy at the offset fcSttbSavedBy . This value SHOULD <43> be zero.

fcSttbFnm (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An SttbFnm
that contains information about the external files that are referenced by this doc ument begins at
this offset. If lcbSttbFnm is zero, fcSttbFnm is undefined and MUST be ignored.

lcbSttbFnm (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbFnm at the

offset fcSttbFnm .

fcPlfLst (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A PlfLst that
contains list formatting information begins at this offset. An array of LVL s is appended to the
PlfLst . lcbPlfLst does not account for the array of LVL s. The size of the array of LVL s is specified
by the LSTF s in PlfLst . For each LSTF whose fSimpleList is set to 0x1, there is one LVL in the
array of LVL s that specifies the level formatting of the single level in the list which corresponds to
the LSTF . And, for each LSTF whose fSimpleList is set to 0x0, there are 9 LVL s in the array of

LVL s that specify the level formatting of the respective levels in the list which corresponds to the
LSTF . This array of LVL s is in the same respective order as the LSTF s in PlfLst . If lcbPlfLst is 0,
fcPlfLst is undefined and MUST be ignored.

lcbPlfLst (4 bytes): An unsign ed integer that specifies the size, in bytes, of the PlfLst at the offset
fcPlfLst . This does not include the size of the array of LVL s that are appended to the PlfLst .

fcPlfLfo (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A PlfLfo that

contains list formatting override information begins at this offset. If lcbPlfLfo is zero, fcPlfLfo is
undefined and MUST be ignored.

lcbPlfLfo (4 bytes): An unsigned integer that s pecifies the size, in bytes, of the PlfLfo at the offset
fcPlfLfo .

fcPlcfTxbxBkd (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcfTxbxBkd begins at this offset and specifies which ranges of text go inside which textboxes.

lcbPlcfTxbxBkd (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcfTxbxBkd

that begins at offset fcPlcfTxbxBkd in the Table Stream.

77 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

lcbPlcfTxbxBkd MUST be zero if FibRgLw97.ccpTxbx is zero, and MUST be nonzero if
FibRgLw97.ccpTxbx is nonzero.

fcPlcfTxbxHdrBkd (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
Plc fTxbxHdrBkd begins at this offset and specifies which ranges of text are contained inside

which header textboxes.

lcbPlcfTxbxHdrBkd (4 bytes): An unsigned integer that specifies the size, in bytes, of the
PlcfTxbxHdrBkd that begins at offset fcPlcfTxbxHdrB kd in the Table Stream.

lcbPlcfTxbxHdrBkd MUST be zero if FibRgLw97.ccpHdrTxbx is zero, and MUST be nonzero if
FibRgLw97.ccpHdrTxbx is nonzero.

fcDocUndoWord9 (4 bytes): An unsigned integer that specifies an offset in the WordDocument
Stream. Version -speci fic undo information begins at this offset. This information SHOULD

NOT<44> be emitted and SHOULD <45> be ignored.

lcbDocUndo Word9 (4 bytes): An unsigned integer. If this is nonzero, version -specific undo

information exists at offset fcDocUndoWord9 in the WordDocument Stream.

fcRgbUse (4 bytes): An unsigned integer that specifies an offset in the WordDocument Stream.
Version -specific undo information begins at this offset. This information SHOULD NOT <46> be
emitted and SHOULD <47> be ignored.

lcbRgbU se (4 bytes): An unsigned integer that specifies the size, in bytes, of the version -specific
undo information at offset fcRgbUse in the WordDocument Stream.

fcUsp (4 bytes): An unsigned integer that specifies an offset in the WordDocument Stream. Version -
specific undo information begins at this offset. This information SHOULD NOT <48> be emitted and
SHOULD<49> be ignored.

lcbUsp (4 bytes): An unsigned integer that specifies the size, in bytes, of the version -specific undo
information at offset fcUsp in the WordDocument Stream.

fcUskf (4 bytes): An unsigned integer that specifies an offset in the Table Stream. Version -specific
undo information begins at this offset. This information SHOULD NOT <50> be emitted and
SHOULD<51> be ignored.

lcbUskf (4 byt es): An unsigned integer that specifies the size, in bytes, of the version -specific undo
information at offset fcUskf in the Table Stream.

fcPlcupcRgbUse (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plc
begins at this offs et and contains version -specific undo information. This information SHOULD

NOT<52> be emitted and SHOULD <53> be ignored.

lcb PlcupcRgbUse (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plc at
offset fcPlcupcRgbUse in the Table Stream.

fcPlcupcUsp (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plc
begins at this offset and contains version -specific undo information. This information SHOULD

NOT<54> be emitted and SHOULD <55> be ignored.

lcbPlcupc Usp (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plc at offset
fcPlcupcUsp in the Table Stream.

fcSttbGlsyStyle (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
SttbGlsyStyle , which contains information about the style s that are used by the AutoText items
which are defined in this document, begins at this offset.

78 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

lcbSttbGlsyStyle (4 bytes): An unsigned integer that specifies the size, in bytes, of the
SttbGlsyStyle at offset fcSttbGlsyStyle in the Table Stream. If base.fGlsy of the Fib that

contains this FibRgFcLcb97 is zero, this value MUST be zero.

fcPlgosl (4 bytes): An unsign ed integer that specifies an offset in the Table Stream. A PlfGosl

begins at the offset. If lcbPlgosl is zero, fcPlgosl is undefined and MUST be ignored.

lcbPlgosl (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlfGosl at offset
fcPlgosl in the Table Stream.

fcPlcocx (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A RgxOcxInfo
that specifies information about the OLE controls in the document begins at this offset. When
there are no OLE controls in the document, fcPlcocx and lcbPlcocx MUST be zero and MUS T be
ignored. If there are any OLE controls in the document, fcPlcocx MUST point to a valid

RgxOcxInfo .

lcbPlcocx (4 bytes): An unsigned integer that specifies the size, in bytes, of the RgxOcxInfo at the
offset fcPlcocx .

fcPlcfBteLvc (4 bytes): An unsign ed integer that specifies an offset in the Table Stream. A
deprecated numbering field cache begins at this offset. This information SHOULD NOT <56> be
emitted and SHOULD <57> ignored. If lcbPlcfBteLvc is zero, fcPlcfBteLvc is undefined and

MUST be ignored.

lcbPlcfBteLvc (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
numbering field cache at of fset fcPlcfBteLvc in the Table Stream. This value SHOULD <58> be
zero.

dwLowDateTime (4 bytes): The low -order part of a FILETIME structure, as specified by [MS -
DTYP] , that specifies when the document was last saved.

dwHighDateTime (4 bytes): The high -order part of a FILETIME structure, as specified by [MS -

DTYP], that specifies when the document was last saved.

fcPlc fLvcPre10 (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated list level cache begins at this offset. Information SHOULD NOT <59> be emitted at this
offset and SHOULD <60> be ignored. If lcbPlcfLvcPre10 is zero, fcPlcfLvcPre10 is undefined
and MUST be ignored.

lcbPlcfLvcPre10 (4 bytes): An unsigned integer that specifi es the size, in bytes, of the deprecated
list level cache at offset fcPlcfLvcPre10 in the Table Stream. This value SHOULD <61> be zero.

fcPlcfAsumy (4 bytes): An unsigned integer that specifi es an offset in the Table Stream. A
PlcfAsumy begins at the offset. If lcbPlcfAsumy is zero, fcPlcfAsumy is undefined and MUST
be ignored.

lcbPlcfAsumy (4 bytes): An unsigned integer that specifie s the size, in bytes, of the PlcfAsumy at
offset fcPlcfAsumy in the Table Stream.

fcPlcfGram (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfgram ,

which specifie s the state of the grammar checker for each text range, begins at this offset. If
lcbPlcfGram is zero, then fcPlcfGram is undefined and MUST be ignored.

lcbPlcfGram (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfgram that
beg ins at offset fcPlcfGram in the Table Stream.

fcSttbListNames (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
SttbListNames , which specifies the LISTNUM field names of the lists in the document, begins at
this offset. If lcbSttbListNames is zero, fcSttbListNames is undefined and MUST be ignored.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

79 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

lcbSttbListNames (4 bytes): An unsigned integer that specifies the size, in bytes, of the
SttbListNames at the offset fcSttbListNames .

fcSttbfUssr (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated, version -specific undo information begins at this offset. This information SHOU LD

NOT<62> be emitted and SHOULD <63> be ignored.

lcbSttbfUssr (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated,
version -specific undo information at offset fcSttbfUssr in the Table Stream.

2.5.7 FibRgFcLcb2000

The FibRgFcLcb2000 structure is a variable -sized portion of the Fib. It extends the FibRgFcLcb97 .

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

rgFcLcb97 (744 bytes)

...

...

fcPlcfTch

lcbPlcfTch

fcRmdThreading

lcbRmdThreading

fcMid

lcbMid

fcSttbRgtplc

lcbSttbRgtplc

fcMsoEnvelope

lcbMsoEnvelope

fcPlcfLad

lcbPlcfLad

fcRgDofr

lcbRgDofr

fcPlcosl

80 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

lcbPlcosl

fcPlcfCookieOld

lcbPlcfCookieOld

fcPgdMotherOld

lcbPgdMotherOld

fcBkdMotherOld

lcbBkdMotherOld

fcPgdFtnOld

lcbPgdFtnOld

fcBkdFtnOld

lcbBkdFtnOld

fcPgdEdnOld

lcbPgdEdnOld

fcBkdEdnOld

lcbBkdEdnOld

rgFcLcb97 (744 bytes): The contained FibRgFcLcb97 .

fcPlcfTch (4 bytes): An unsigned integer that specifies an offset in the Table Stream . A PlcfTch
begins at this offset and specifies a cache of table characters. Information at this offset

SHOULD<64> be ignored. If lcbPlcfTch is zero, fcPlcfTch is undefined and MUST be ignored.

lcbPlcfTch (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcfTch at offset
fcPlcfTch .

fcRmdThreading (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
RmdThreading that specifies the data concerning the e -mail messages and their authors in this
document begins at this offset.

lcbRmdThreading (4 bytes): An unsigned integer that specifies the size, in bytes, of the
RmdThreading at the offset fcRmdThreading . This value MUST NOT be zero.

fcMid (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A double -byte
character Unicod e string that specifies the message identifier of the document begins at this
offset. This value MUST be ignored.

lcbMid (4 bytes): An unsigned integer that specifies the size, in bytes, of the double -byte character
Unicode string at offset fcMid . This value MUST be ignored.

81 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcSttbRgtplc (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
SttbRgtplc that speci fies the styles of lists in the document begins at this offset. If lcbSttbRgtplc

is zero, fcSttbRgtplc is undefined and MUST be ignored.

lcbSttbRgtplc (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbRgtplc at

the offset fcSttbR gtplc .

fcMsoEnvelope (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
MsoEnvelopeCLSID , which specifies the envelope data as specified by [MS -OSHARED] section
2.3.8.1, begins at this offset. If lcbMsoEnvelope is zero, fcMsoEnvelope is undefined and MUST
be ignored.

lcbMsoEnvelope (4 bytes): An unsigned integer that specifies the size, in bytes, of the
MsoEnvelopeCLSID at the offset fcMsoEnvelope .

fcPlcfLad (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcflad
begins at this offset and specifies the language auto -detect state of each text range. If lcbPlcfLad
is zero, fcPlcfLad is undefined and MUST be ignored.

lcbPlcfLad (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcflad that
begins at offset fcPlcfLad in the Table Stream.

fcRgDofr (4 bytes): An unsigned integer that s pecifies an offset in the Table Stream. A variable -

length array with elements of type Dofrh begins at that offset. The elements of this array are
records that support the frame set and list style features. If lcbRgDofr is zero, fcRgDofr is
undefined and MUST be ignored.

lcbRgDofr (4 bytes): An unsigned integer that specifies the size, in bytes, of the array that begins
at offset fcRgDofr in the Table Stream.

fcPlcosl (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A PlfCosl begins
at the offset. If lcbPlcosl is zero, fcPlcosl is undefined and MUST be ignored.

lcbPlcosl (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlfCosl at offset

fcPlcosl in the Table Stream.

fcPlcfCookieOld (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcfcookieOld begins at this offset. If lcbPlcfcookieOld is zero, fcPlcfcookieOld is undefined
and MUST be ignored. fcPlcfcookieOld MAY<65> be ignored.

lcbPlcfCookieOld (4 bytes): An unsigned integer that specifies the size, in bytes, of the
PlcfcookieOld at offset fcPlcfcookieOld in the Table Stream.

fcPgdMotherOld (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated document page layout cache begins at this offset. Information SHOULD NOT <66> be
emitted at this offset and SHOULD <67> be ignored. If lcbPgdMotherOld is zero, fcPgdMotherOld
is undefined and MUST be ignored.

lcbPgdMotherOld (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
document page layout cache at offset fcPgdMotherOld in the Table Stream.

fcBkdMotherOld (4 bytes) : An unsigned integer that specifies an offset in the Table Stream. The
deprecated document text flow break cache begins at this offset. Information SHOULD NOT <68> be
emitted at this offset and SHOULD <69> be ignored. If lcbBkdMotherOld is zero, fcBkdMotherOld
is undefined and MUST be ignored.

lcbBkdMotherOld (4 bytes): An unsigned integer that specifies the size, in bytes, of t he deprecated
document text flow break cache at offset fcBkdMotherOld in the Table Stream.

fcPgdFtnOld (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The

deprecated footnote layout cache begins at this offset. Information SHOU LD NOT <70> be emitted at

%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d

82 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

this offset and SHOULD <71> be ignored. If lcbPgdFtnOld is zero, fcPgdFtnOld is undefined and
MUST b e ignored.

lcbPgdFtnOld (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
footnote layout cache at offset fcPgdFtnOld in the Table Stream.

fcBkdFtnOld (4 bytes): An unsigned integer that specifies an offset in the Table S tream. The
deprecated footnote text flow break cache begins at this offset. Information SHOULD NOT <72> be
emitted at this offset and SHOULD <73> be ignored. If lcbBkdFtnOld is zero, fcBkdFtnOld is
undefined and MUST be ignored.

lcbBkdFtnOld (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
footnote text flow break cache at offset fcBkdFtnOld in the Table Stream.

fcPgdEdnOld (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The

deprecated endnote layout cache begins at this offset. Information SHOULD NOT <7 4> be emitted at
this offset and SHOULD <75> be ignored. If lcbPgdEdnOld is zero, fcPgdEdnOld is undefined and
MUST be ignored.

lcbPgdEdnOld (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
endnote layout cache at offset fcPgdEdnOld in the Table Stream.

fcBkdEdnOld (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The

deprecated endnote text flow break cache begins at this offset. Information SHOULD NOT <76> be
emitted at this offset and SHOULD <77> be ignored. If lcbBkdEdnOld is zero, fcBkdEdnOld is
unde fined and MUST be ignored.

lcbBkdEdnOld (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
endnote text flow break cache at offset fcBkdEdnOld in the Table Stream.

2.5.8 FibRgFcLcb2002

The FibRgFcLcb2002 structure is a variable -sized portion of the Fib. It extends the FibRgFcLcb2000 .

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

rgFcLcb2000 (864 bytes)

...

...

fcUnused1

lcbUnused1

fcPlcfPgp

lcbPlcfPgp

fcPlcfuim

lcbPlcfuim

83 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcPlfguidUim

lcbPlfguidUim

fcAtrdExtra

lcbAtrdExtra

fcPlrsid

lcbPlrsid

fcSttbfBkmkFactoid

lcbSttbfBkmkFactoid

fcPlcfBkfFactoid

lcbPlcfBkfFactoid

fcPlcfcookie

lcbPlcfcookie

fcPlcfBklFactoid

lcbPlcfBklFactoid

fcFactoidData

lcbFactoidData

fcDocUndo

lcbDocUndo

fcSttbfBkmkFcc

lcbSttbfBkmkFcc

fcPlcfBkfFcc

lcbPlcfBkfFcc

fcPlcfBklFcc

lcbPlcfBklFcc

fcSttbfbkmkBPRepairs

84 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

lcbSttbfbkmkBPRepairs

fcPlcfbkfBPRepairs

lcbPlcfbkfBPRepairs

fcPlcfbklBPRepairs

lcbPlcfbklBPRepairs

fcPmsNew

lcbPmsNew

fcODSO

lcbODSO

fcPlcfpmiOldXP

lcbPlcfpmiOldXP

fcPlcfpmiNewXP

lcbPlcfpmiNewXP

fcPlcfpmiMixedXP

lcbPlcfpmiMixedXP

fcUnused2

lcbUnused2

fcPlcffactoid

lcbPlcffactoid

fcPlcflvcOldXP

lcbPlcflvcOldXP

fcPlcflvcNewXP

lcbPlcflvcNewXP

fcPlcflvcMixedXP

lcbPlcflvcMixedXP

85 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

rgFcLcb2000 (864 bytes): The contained FibRgFcLcb2000 .

fcUnused1 (4 bytes): This value is undefined and MUST be ignored.

lcbUnused1 (4 bytes): This value MUST be zero, and MUST be ignored

fcPlcfPgp (4 bytes): An unsigned integer that specifies an offset in the Table Stream . A PGPArray

begins at this offset. If lcbPlcfPgp is 0, fcPlcfPgp is undefined and MUST be ignored.

lcbPlcfPgp (4 byt es): An unsigned integer that specifies the size, in bytes, of the PGPArray that is
stored at offset fcPlcfPgp .

fcPlcfuim (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfuim
begins at this offset. If lcbPlcfuim is zero, fcPlcfuim is undefined and MUST be ignored.

lcbPlcfuim (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfuim at offset
fcPlcfuim .

fcPlfguidUim (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlfguidUim begins at this offset. If lcbPlfguidUim is zero, fcPlfguidUim is undefined and MUST
be ignored.

lcbPlfguidUim (4 byte s): An unsigned integer that specifies the size, in bytes, of the PlfguidUim at
offset fcPlfguidUim.

fcAtrdExtra (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An

Atr dExtra begins at this offset. If lcbAtrdExtra is zero, fcAtrdExtra is undefined and MUST be
ignored.

lcbAtrdExtra (4 bytes): An unsigned integer that specifies the size, in bytes, of the AtrdExtra at
offset fcAtrdExtra in the Table Stream.

fcPlrsid (4 byte s): An unsigned integer that specifies an offset in the Table Stream. A PLRSID
begins at this offset. If lcbPlrsid is zero, fcPlrsid is undefined and MUST be ignored.

lcbPlrsid (4 bytes): An uns igned integer that specifies the size, in bytes, of the PLRSID at offset

fcPlrsid in the Table Stream.

fcSttbfBkmkFactoid (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
SttbfBkmkFactoid containing information about smart tag bookmarks in the document begins
at this offset. If lcbSttbfBkmkFactoid is zero, fcSttbfBkmkFactoid is undefined and MUST be
ignored .

The SttbfBkmkFactoid is parallel to the Plcfbkfd at offset fcPlcfBkfFactoid in the Table
Stream. Each element in the SttbfBkmkFactoid specifies information about the bookmark that

is associated with the data element which is located at the same offset in that Plcfbkfd . For this
reason, the SttbfBkmkFactoid that begins at offset fcSttbfBkmkFactoid , and the Plcfbkfd that
begins at offset fcPlcfBkfFactoid , MUST contain the same number of elements.

lcbSttbfBkmkFactoid (4 bytes): An unsigned integer that specifies the size, in bytes, of the

SttbfBkmkFactoid at offset fcSttbfBkmkFactoid .

fcPlcfBkfFactoid (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A

Plcfbkfd that contains information about the smart tag bookmarks in the document begins at this
offset. If lcbPlcfBkfFactoid is zero, fcPlcfBkfFactoid is undefined and MUST be ignored.

Each data element in the Plcfbkfd is associated, in a one - to -one correlation, with a data element
in the Plcfbkld at offset fcPlcfBklFactoid . For this reason, the Plcfbkfd that begins at offset
fcPlcfB kfFactoid , and the Plcfbkld that begins at offset fcPlcfBklFactoid , MUST contain the
same number of data elements. The Plcfbkfd is parallel to the SttbfBkmkFactoid at offset
fcSttbfBkmkFactoid in the Table Stream. Each data element in the Plcfbkfd specifie s

86 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

information about the bookmark that is associated with the element which is located at the same
offset in that SttbfBkmkFactoid . For this reason, the Plcfbkfd that begins at offset

fcPlcfBkfFactoid , and the SttbfBkmkFactoid that begins at offset fcSttbfB kmkFactoid , MUST
contain the same number of elements.

lcbPlcfBkfFactoid (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkfd at
offset fcPlcfBkfFactoid .

fcPlcfcookie (4 bytes): An unsigned integer that specifies an offset in t he Table Stream. A
Plcfcookie begins at this offset. If lcbPlcfcookie is zero, fcPlcfcookie is undefined and MUST be
ignored. fcPlcfcookie MAY<78> be ignored.

lcbPlcfcookie (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfcookie at
offset fcPlcfcookie in the Table Stream.

fcPlcfBklFactoid (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
Plcfbkld that contains information about the smart tag bookmarks in the document begins at this
offset. If lcbPlcfBklFactoid is zero, fcPlcfBklFactoid is undefined and MUST be ignored.

Each data element in the Plcfbkld is associated, in a one - to-one correlation, with a data element
in the Plcfbkfd at offset fcPlcfBkfFactoid . For this reason, the Plcfbkld that begins at offset
fcPlcfBklFactoid , and the Plcfbkfd that begins at offset fcPlcfBkfFactoid , MUST contain the

same number of data elements.

lcbPlcfBklFactoid (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkld at
offset fcPlcfBklFactoid .

fcFactoidData (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
SmartTagData begins at this offset and specifies information about the smart tag recognizers
that are used in this document. If lcbFactoidData is zero, fcFactoidData is undefined and MUST
be ignored.

lcbFactoidData (4 bytes): An unsigned integer that specifies the size, in bytes, of the SmartTagData
at offset fcFactoidData in the Table Stream.

fcDocUndo (4 bytes): An unsigned integer that specifies an offset in the WordDocument Stream .
Version -specific undo information begins at this offset. This information SHOULD NOT <79> be
emitted and SHOULD <80> be ignored.

lcbDocUndo (4 bytes): An unsigned integer. If this value is nonzero, version -specific undo
information exists at offset fcDocUndo in the WordDocument Stream.

fcSttbfBkmkFcc (4 b ytes): An unsigned integer that specifies an offset in the Table Stream. An
SttbfBkmkFcc that contains information about the format co nsistency - checker bookmark s in
the document begins at this offset. If lcbSttbfBkmkFcc is zero, fcSttbfBkmkFcc is undefined
and MUST be ignored.

The SttbfBkmkFcc is parallel to the Plcfbkfd at offset fcPlcfBkfFcc in the Table Stream. Each
element in the SttbfBkmkFcc specifies information about the bookmark that is associated with

the data element which is located at the same offset in that Plcfbkfd . For this reason, the

SttbfBkmkFcc that begins at offset fcSttbfBkmkFcc , and the Plcfbkfd that begins at off set
fcPlcfBkfFcc , MUST contain the same number of elements.

lcbSttbfBkmkFcc (4 bytes): An unsigned integer that specifies the size, in bytes, of the
SttbfBkmkFcc at offset fcSttbfBkmkFcc .

fcPlcfBkfFcc (4 bytes): An unsigned integer that specifies an offse t in the Table Stream. A Plcfbkfd
that contains information about format consistency -checker bookmarks in the document begins at

this offset. If lcbPlcfBkfFcc is zero, fcPlcfBkfFcc is undefined and MUST be ignored.

87 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Each data element in the Plcfbkfd is ass ociated, in a one - to -one correlation, with a data element
in the Plcfbkld at offset fcPlcfBklFcc . For this reason, the Plcfbkfd that begins at offset

fcPlcfBkfFcc and the Plcfbkld that begins at offset fcPlcfBklFcc MUST contain the same number
of data elem ents. The Plcfbkfd is parallel to the SttbfBkmkFcc at offset fcSttbfBkmkFcc in the

Table Stream. Each data element in the Plcfbkfd specifies information about the bookmark that is
associated with the element which is located at the same offset in that Sttb fBkmkFcc . For this
reason, the Plcfbkfd that begins at offset fcPlcfBkfFcc and the SttbfBkmkFcc that begins at
offset fcSttbfBkmkFcc MUST contain the same number of elements.

lcbPlcfBkfFcc (4 bytes): An unsigned integer that specifies the size, in bytes, o f the Plcfbkfd at
offset fcPlcfBkfFcc .

fcPlcfBklFcc (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfbkld

that contains information about the format consistency -checker bookmarks in the document
begins at this offset. If lcbPlcfBklFcc is zero, fcPlcfBklFcc is undefined and MUST be ignored.

Each data element in the Plcfbkld is associated, in a one - to -one correlation, with a data element
in the Plcfbkfd at offset fcPlcfBkfFcc . For this reason, the Plcfbkld that begins at offset

fcPlcfBklFcc , and the Plcfbkfd that begins at offset fcPlcfBkfFcc , MUST contain the same
number of data elements.

lcbPlcfBklFcc (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkld at
offset fcPlcfBklFcc .

fcSttbfbkmkBPRepairs (4 bytes): An unsigned integer that specifies an offset in the Table Stream.
An SttbfBkmkBPRepairs that contains information about the repair bookmarks in the
document begins at this offset. If lcbSttbfBkmkBPRepairs is zero, fcSttbfBkmkBPRepairs is
undefined and MUST be ignored.

The SttbfBkmkBPRepairs is parallel to the Plcfbkf at offset fcPlcfBkfBPRepairs in the Table

Stream. Each element in the SttbfBkmkBPRepairs specifies information about the bookmark
that is associated with the data element which is located at the same offset in that Plcfbkf . For
this reason, the SttbfBkmkBPRepairs that begins at offset fcSttbfBkmkBPRepairs , and the
Plcfbkf that begins at offset fcPlcfBkfBPRepairs , MUST contain the same number of elements.

lcbSttbfbkmkBPRepairs (4 bytes): An unsigned integer that specifies the size, i n bytes, of the
SttbfBkmkBPRepairs at offset fcSttbfBkmkBPRepairs .

fcPlcfbkfBPRepairs (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A

Plcfbkf that contains information about the repair bookmarks in the document begins at thi s
offset. If lcbPlcfBkfBPRepairs is zero, fcPlcfBkfBPRepairs is undefined and MUST be ignored.

Each data element in the Plcfbkf is associated, in a one - to -one correlation, with a data element in
the Plcfbkl at offset fcPlcfBklBPRepairs . For this reason, the Plcfbkf that begins at offset
fcPlcfBkfBPRepairs , and the Plcfbkl that begins at offset fcPlcfBklBPRepairs , MUST contain
the same number of data elements. The Plcfbkf is parallel to the SttbfBk mkBPRepairs at offset

fcSttbfBkmkBPRepairs in the Table Stream. Each data element in the Plcfbkf specifies
information about the bookmark that is associated with the element which is located at the same
offset in that SttbfBkmkBPRepairs . For this reason, the Plcfbkf that begins at offset

fcPlcfbkfBPRepairs , and the SttbfBkmkBPRepairs that begins at offset
fcSttbfBkmkBPRepairs , MUST contain the same number of elements.

The CPs in this Plcfbkf MUST NOT exceed the CP that represents the end of the Main Document
part .

lcbPlcfbkfBPRepairs (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkf
at off set fcPlcfbkfBPRepairs .

88 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcPlcfbklBPRepairs (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
Plcfbkl that contains information about the repair bookmarks in the document begins at this

offset. If lcbPlcfBklBPRepairs is zero, f cPlcfBklBPRepairs is undefined and MUST be ignored.

Each data element in the Plcfbkl is associated, in a one - to -one correlation, with a data element in

the Plcfbkf at offset fcPlcfBkfBPRepairs . For this reason, the Plcfbkl that begins at offset
fcPlcfBklBP Repairs , and the Plcfbkf that begins at offset fcPlcfBkfBPRepairs , MUST contain
the same number of data elements.

The CPs that are contained in this Plcfbkl MUST NOT exceed the CP that represents the end of the
Main Document part.

lcbPlcfbklBPRepairs (4 b ytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkl
at offset fcPlcfBklBPRepairs .

fcPmsNew (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A new Pms ,
which contains the current state of a print merge operation, begins at this offset. If lcbPmsNew
is zero, fcPmsNew is undefined and MUST be ignored.

lcbPmsNew (4 bytes): An unsigned integer which specifies the size, in bytes, of the Pms at offset
fcPmsNew .

fcODSO (4 bytes): An unsigned integer that specifies an offset in the Table Stream. Office Data

Source Object (ODSO) data that is used to perform mail merge begins at this offset. The data is
stored in an array of ODSOPropertyBase items. The ODSOPropertyBase items are of variable
size and are stored contiguously. The complete set of properties that are contained in the array is
determined by reading each ODSOPropertyBase , until a total of lcbODSO bytes of data are
read. If lcbODSO is zero, fcODSO is undefined and MUST be ignored.

lcbODSO (4 bytes): An unsigned integer that specifies the size, in bytes, of the Offi ce Data Source
Object data at offset fcODSO in the Table Stream.

fcPlcfpmiOldXP (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated paragraph mark information cache begins at this offset. Information SHOULD

NOT<81> be emitted at this offset and SHOULD <82> be ignored. If lcbPlcfpmiOldXP is zero,
fcPlcfpmiOldXP is undefined and MUST be igno red.

lcbPlcfpmiOldXP (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
paragraph mark information cache at offset fcPlcfpmiOldXP in the Table Stream. This value
SHOULD<83> be zero.

fcPlcfpmiNewXP (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated paragraph mark information cache begins at this offset. Information SHOULD
NOT<84> be emitted at this offset and SHOULD <85> be ignored. If lcbPlcfpmiNewXP is zero,
fcPlcfpmiNewXP is undefined and MUST be ignored.

lcbPlcfpmiNewXP (4 bytes): An unsig ned integer that specifies the size, in bytes, of the deprecated
paragraph mark information cache at offset fcPlcfpmiNewXP in the Table Stream. This value

SHOULD<86> be zero.

fcPlcfpmiMixedX P (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated paragraph mark information cache begins at this offset. Information SHOULD
NOT<87> be emitted at this offset and SHOULD <88> be ignored. If lcbPlcfpmiMixedXP is zero,
fcPlcfpmiMixedXP is undefined and MUST be ignored.

lcbPlcfpmiMixedXP (4 bytes): An unsigned integer that specifies the size, in bytes, of the
deprecated paragraph mark information cache at offset fcPlcfpmiMixedXP in the Table Stream.

This value SHOULD <89> be zero.

fcUnu sed2 (4 bytes): This value is undefined and MUST be ignored.

89 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

lcbUnused2 (4 bytes): This value MUST be zero, and MUST be ignored.

fcPlcffactoid (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
Plcffactoid , which specifies the smart tag recognizer state of each text range, begins at this
offset. If lcbPlcffactoid is zero, fcPlcffactoid is undefined and MUST be ignored.

lcbPlcffactoid (4 bytes): An unsigned integer that specifies the size, in bytes of the Plcffactoid
that begins at offset fcPlcffactoid in the Table Stream.

fcPlcflvcOldXP (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated listnum field cache begins at this offset. I nformation SHOULD NOT <90> be emitted at
this offset and SHOULD <91> be ignored. If lcbPlcflvcOldXP is zero, fcPlcflvcOldXP is undefined
and MUST be ignored.

lcbPlcflvcOldXP (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated

listnum field cache at offset fcPlcflvcOldXP in the Table Stream. This value SHOULD <92> be
zero.

fcPlcflvcNewXP (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated listnum field cache begins at this offset. Information SHOULD NOT <93> be emitted at
this offset and SHOULD <94> be ignored. If lcbPlcflvcNewXP is zero, fcPlcflvcNewXP is
undefined and MUST be ignored.

lcbPlcflvcNewXP (4 bytes): An unsi gned integer that specifies the size, in bytes, of the deprecated
listnum field cache at offset fcPlcflvcNewXP in the Table Stream. This value SHOULD <95> be
zero.

fcPlcflvcMixedXP (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated listnum field cache begins at this offset. Information SHOULD NOT <96> be emitted at
this offset and SHOULD <97> be ignored. If lcbPlcflvcMixedXP is zero, fcPlcflvcMixedXP is
undefined and MUST be ignored.

lcbPlcflvcMixedXP (4 bytes): An unsigned integer that specifies the size, in bytes, of the
deprecated listnum field cache at offset fcPlcflvcMixedXP in the Table Stream. This value

SHOULD<98> be zero.

2.5.9 FibRgFcLcb2003

The FibRgFcLcb2003 structure is a variable -sized portion of the Fib. It extends the FibRgFcLcb2002 .

0 1 2 3 4 5 6 7 8 9
1

0
1 2 3 4 5 6 7 8 9

2

0
1 2 3 4 5 6 7 8 9

3

0
1

rgFcLcb2002 (1088 bytes)

...

...

fcHplxsdr

lcbHplxsdr

fcSttbfBkmkSdt

lcbSttbfBkmkSdt

90 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcPlcfBkfSdt

lcbPlcfBkfSdt

fcPlcfBklSdt

lcbPlcfBklSdt

fcCustomXForm

lcbCustomXForm

fcSttbfBkmkProt

lcbSttbfBkmkProt

fcPlcfBkfProt

lcbPlcfBkfProt

fcPlcfBklProt

lcbPlcfBklProt

fcSttbProtUser

lcbSttbProtUser

fcUnused

lcbUnused

fcPlcfpmiOld

lcbPlcfpmiOld

fcPlcfpmiOldInline

lcbPlcfpmiOldInline

fcPlcfpmiNew

lcbPlcfpmiNew

fcPlcfpmiNewInline

lcbPlcfpmiNewInline

fcPlcflvcOld

91 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

lcbPlcflvcOld

fcPlcflvcOldInline

lcbPlcflvcOldInline

fcPlcflvcNew

lcbPlcflvcNew

fcPlcflvcNewInline

lcbPlcflvcNewInline

fcPgdMother

lcbPgdMother

fcBkdMother

lcbBkdMother

fcAfdMother

lcbAfdMother

fcPgdFtn

lcbPgdFtn

fcBkdFtn

lcbBkdFtn

fcAfdFtn

lcbAfdFtn

fcPgdEdn

lcbPgdEdn

fcBkdEdn

lcbBkdEdn

fcAfdEdn

lcbAfdEdn

92 / 576

[MS -DOC] - v20211116
Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcAfd

lcbAfd

rgFcLcb2002 (1088 bytes): The contained FibRgFcLcb2002 .

fcHplxsdr (4 bytes): An unsigned integer that specifies an offset in the Table Stream . An Hplxsdr
structure begins at this offset. This structure specifies information about XML schema definition

(XSD) references.

lcbHplxsdr (4 bytes): An unsigned integer that specifies the size, in bytes, of the Hplxsdr structure
at the offset fcHplxsdr in the Table Stream. If lcbHplxsdr is zero, then fcHplxsdr is undefined
and MUST be ignored.

fcSttbfBkmkSdt (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
SttbfBkmkSdt that contains information about the structured document tag bookmarks in

the document begins at this offset. If lcbSttbfBkmkSdt is zero, then fcSttbfBkmkSdt is
undefined and MUST be ignored.

The SttbfBkmkSdt is parallel to the Plcbkfd at offset fcPlcfBkfSdt in the Table Stream. Each
element in the SttbfBkmkSdt specifies information about the bookmark that is associated with
the data element which is located at the same offset in that Plcbkfd . For this reason, the
SttbfBkmkSdt that begins at offset fcSttbfBkmkSdt , and the Plcbkfd that begins at offset
fcPlcfBkfSdt , MUST contain the same number of elements.

lcbSttbfBkmkSdt (4 bytes): An unsigned integer that specifies the size, in bytes, of the
SttbfBkmkSdt at offset fcSttbfBkmkSdt .

fcPlcfBkfSdt (4 bytes): An unsigned integer that specifies a n offset in the Table Stream. A Plcbkfd
that contains information about the structured document tag bookmarks in the document begins
at this offset. If lcbPlcfBkfSdt is zero, fcPlcfBkfSdt is undefined and MUST be ignored.

Each data element in the Plcbkfd is associated, in a one - to -one correlation, with a data element
in the Plcbkld at offset fcPlcfBklSdt . For this reason, the Plcbkfd that begins at offset

fcPlcfBkfSdt , and the Plcbkld that begins at offset fcPlcfBklSdt , MUST contain the same
number of data elements. The Plcbkfd is parallel to the SttbfBkmkSdt at offset
fcSttbfBkmkSdt in the Table Stream. Each data element in the Plcbkfd specifies information
about the bookmark that is associated wi th the element which is located at the same offset in that
SttbfBkmkSdt . For this reason, the Plcbkfd that begins at offset fcPlcfBkfSdt , and the
SttbfBkmkSdt that begins at offset fcSttbfBkmkSdt , MUST contain the same number of

elements.

lcbPlcfBkfSdt (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcbkfd at
offset fcPlcfBkfSdt .

fcPlcfBklSdt (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcbkld
that contains information about the structured document tag bookmarks in the document begins
at this offset. If lcbPlcfBklSdt is zero, fcPlcfBklSdt is undefined and MUST be ignored.

Each data element in the Plcbkld is associated, in a one - to -one correlation, with a data element

in the Plcbk fd at offset fcPlcfBkfSdt . For this reason, the Plcbkld that begins at offset
fcPlcfBklSdt , and the Plcbkfd that begins at offset fcPlcfBkfSdt MUST contain the same number
of data elements.

lcbPlcfBklSdt (4 bytes): An unsigned integer that specifies the si ze, in bytes, of the Plcbkld at
offset fcPlcfBklSdt .

