[MS -DOC]:
Word (.doc) Binary File Format

Intellectual Property Rights Notice for Open Specifications Documentation

A Technical Documentation. Mi crosoft publishes Open Specifications do
documentationo) for protocols, file formats, data portabi
support. Additionally, overview documents cover inter -protocol relationships and interactions.

A Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other

terms that are contained in the terms of use for the Microsoft website that hosts this

documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your i mplementation, with or without modification, any

schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.

No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.

Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of

thi s documentation grants any licenses under those patents or any other Microsoft patents.

However, a given Open Specifications document might be covered by the Microsoft Open

Specifications Promi__se or the Microsoft Community Promise . If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications

Promise or Commun ity Promise, as applicable, patent licenses are available by contacting

iplg@microsoft.com

License Programs . To see all of the protocols in scope under a specific license program and the

associated patents, visit the Patent Map .

Trademarks . The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any

licenses undert hose rights. For a list of Microsoft trademarks, visit

www.microsoft.com/trademarks

A Fictitious Names . The example companies, organizations, products, domain names, email
addresses, logos, people, place s, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

> >

>

>

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require the use of Microsoft programming

tool s or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications documents are intended for use in conjuncti on with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com

1/ 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

c
I

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

Revision Summary

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Revision Revision

Date History Class Comments

6/27/2008 1.0 New First release

1/16/2009 1.01 Minor Updated IP Notice

7/13/2009 1.02 Major Changes made for template compliance

8/28/2009 1.03 Editorial Revised and edited the technical content

11/6/2009 1.04 Editorial Revised and edited the technical content

2/19/2010 2.0 Editorial Revised and edited the technical content

3/31/2010 2.01 Editorial Revised and edited the technical content

4/30/2010 2.02 Editorial Revised and edited the technical content

6/7/2010 2.03 Major Updated and revised the technical content

6/29/2010 2.04 Editorial Changed language and formatting in the technical content.

7/23/2010 204 None No ch_anges to the meaning, language, or formatting of the
technical content.

9/27/2010 2.05 Editorial Changed language and formatting in the technical content.

11/15/2010 205 None No ch_anges to the meaning, language, or formatting of the
technical content.

12/17/2010 205 None No ch_anges to the meaning, language, or formatting of the
technical content.

3/18/2011 205 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/10/2011 205 None No ch_anges to the meaning, language, or formatting of the
technical content.

1/20/2012 3.0 Major Significantly changed the technical content.

4/11/2012 3.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

7116/2012 3.1 Minor Clarified the meaning of the technical content.

10/8/2012 3.2 Minor Clarified the meaning of the technical content.

2/11/2013 3.3 Minor Clarified the meanin g of the technical content.

7/30/2013 33 None No ch_anges to the meaning, language, or formatting of the
technical content.

11/18/2013 33 None No ch_anges to the meaning, language, or formatting of the
technical content.

2/10/2014 33 None No ch_anges to the meaning, language, or formatting of the
technical content.

4/30/2014 34 Minor Clarified the meaning of the technical content.

7/31/2014 4.0 Major Significantly changed the technical content.

2/ 576

Revision Revision

Date History Class Comments

10/30/2014 4.1 Minor Clarified the meaning of the technical content.

3/16/2015 5.0 Major Significantly changed the technical content.

9/4/2015 6.0 Major Significantly changed the technical content.

7/15/2016 6.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

9/14/2016 6.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

9/29/2016 6.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

10/17/2016 6.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

1/12/2017 6.1 Minor Clarified the meaning of the technical content.

4/27/2018 7.0 Major Significantly changed the technical content.

8/28/2018 8.0 Major Significantly changed the technical content.

12/11/2018 8.1 Minor Clarified the meaning of the technical content.

3/19/2019 8.1 None No ch_anges to the meaning, language, or formatting of the
technical content.

11/19/2019 81 None No ch_anges to the meaning, language, or formatting of the
technical content.

2/16/2021 8.2 Minor Clarified the meaning of the technical content.

4/22/2021 9.0 Major Significantly changed the technical content.

8/17/2021 10.0 Major Significantly changed the technical content.

11/16/2021 100 None No changes to the meaning, language, or formatting of the

technical content.

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

3/ 576

Table of Contents

1 Introduction ...,

1.1 Glossaryceeeeevvnenn.

1.2 References
1.2.1 Normative Referencesccoccceeveevviccnvvnennn.
1.2.2 Informative References ccccccvevvvevviieeiennns

1.3 OVEIVIEW ettt eeeeeeeeceirae e e sanenes
1.3.1 CharacCterS ..ciiiiiiciiiieie et
1.3.2 [O
133 Formatting
1.34 Tablesccceeeeeeieiieii,
1.35 PiCIUIES .ot e
1.3.6 TRE FIB oeeeeeeeeeeieeeiiie e
137 Byte Ordering ccocveeeviineeeeiieeene
1.3.8 General Organization of This Documentation

Relationship to Protocols and Other Structures
Applicability Statement
Versioning and Localization
7 Vendor -Extensible Fields

2 Structures
2.1 File Structure
211 WordDocument Stream
212 1Table Stream or OTable St
2.13 Data Stream
214 ObjectPool Storage
2141 Objlnfo Stream
2142 Print Stream
2143 EPrint Stream
2.15 Custom XML Data Storage
2.1.6 Summary Information Stream
217 Document Summary Information Stream
218 Encryption Stream
2.19 Macros Storage
2.1.10 XML Signatures Storage
2111 Signatures Stream
2.1.12 Information Rights Manage
2.1.13 Protected Content Stream
2.2 Fundamental Concepts
221 Character Position (CP)
222
223
2.2.4
225
2251
2252
2.2.6
226.1
2.26.2
2.2.6.3
Document Parts
Main Document
Footnotes
Headers
Comments
Endnotes

XOR Obfuscation
Office Binary Document RC4 Encryption

2.3
231
23.2
2.3.3
234
235

Encryption and Obfuscation (Password to Open)

Office Binary Document RC4 CryptoAP| Encryption

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

4/ 576

2.3.6 TeXtbOXeS .o
237 Header Textboxesccoccviviiiiiiccs v,
24 Document Content ccccovvciiiiiiiiiiiiiies e
24.1 Retrieving Text ...cccccovvvevviieeiiiieeeens
2.4.2 Determining Paragraph Boundaries
243 Overview of Tables ...
2.4.4 Determining Cell Boundaries ccccceveeviieeeennnnn.
245 Determining Row Bo undariescccccvivveeiinennn.
2.4.6 Applying Properties cccooviiiiiiiiieiiies e,
2461 Direct Paragraph Formatting —ccccecvevvvennn.
2.4.6.2 Direct Character Formatting cccceeevveeeeenen.
2.4.6.3 Determining List Formatting of a Paragraph
2464 Determining Level Number of a Paragraph
2.4.6.5 Determining Properties of a Style
2.4.6.6 Determining Formatting Properties ~
2.4.7 Application Data For VtHyperlink ...
25 The File Infor mation BIoCKccooovvviiiiiiiieeeeee
251 FID s
252 FIDBASE ...oooviviiiiiiiciiiciii e
253 FIDRGQWOT7 oot et
254 FIDROLWOT it e
255 FIDRGFCLCD oo e,
256 FIDRGFCLCDOT7 ..oooiiiiiiiviiiiiies e
257 FiIbRGFCLCD2000ocoiiviiiiiiiiiiiieiies e
2538 FibRgFcLch2002
259 FibRgFcLch2003
2.5.10 FibRgFcLch2007
2511 FIDRGCSWNEW ..cviiiiiiiiiiiiiieiiee e
25.12 FibRgCswNewData2000
2.5.13 FibRgCswNewData2007
25.14 Determining the nFib
25.15 Howtoreadthe FIB ... e
2.6 Single Property Modifiers ..o
26.1 Character Properties ccccovvviiiiiieiiiieniee e
2.6.2 Paragraph Propertiesccccccviiiniiiice
26.3 Table Properties coccoiiiiiiiiiiieee e
26.4 Section Properties
26.5 Picture Properties
2.7 Document Properties ..o.cocoveviieniienienes e
2.7.1 DOP i e
27.2 DOPBASE ...oooiciiiiiii et e
273 Dop95
27.4 Dop97
275 DOP2000 ...ooviiiiiiiiiciieneeies e
2.7.6 DOP2002 ...oovieiiiiiiicvienieies e
277 Dop2003
2.7.8 Dop2007
2.7.9 Dop2010
2.7.10 Dop2013
2.7.11 Copts60
2.7.12 Copts80
2.7.13 COPLS e
2.7.14 ASUMYI oo e
2.7.15 DOGrid oot e
2.7.16 DopTypographycccccviiiiiiiiiiiiee e
2.7.17 DOPMEN oo e
2.8 PLCS ittt e
28.1 PICOKS oo e

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

282 Plcbkfdooooiieee

2.8.3 [[o] U
2.8.4 (24101 o] 4 [o [
2.8.5 PIcBteChpX ...ooovviveveciiieecccieees
2.8.6 PIcBtePapXccccceveeviveeeeiinenen.
2.8.7 PlcfandRefcccceeiiiil
2.8.8 PlcfandTxtcoovvvvvveieieeeieinins
2.8.9 PlcfAsumyccccoiviiiiiiiie
28.10 Plcfbkf oo
2.8.11 Plcfbkfd ..ooocveeieeeeeeeieiie
2.8.12 Plcfbkl oo
2.8.13 Plcfbkld ..o,
2.8.14 Plcfcookieccccceiiiil
2.8.15 PlcfcookieOldcccccvvveevieicivvennnen.
28.16 PlcfendRefooeeeiii
2.8.17 PlcfendTXt ...oooeeeieviiiivieieeeeeeens
2.8.18 Plcffactoidccoeeeeeil
2.8.19 PlcffndRefcc
2.8.20 2103 20 l I«
2821 Plefgramcccoovvviieieciie
2.8.22 Plcfthdd ...,
2.8.23 PlcfHArtxbXTXt ooeeeeeeeeeeeieieeeeeee
2.8.24 Plcfladooovvvviiiiieeiiiee
2.8.25 [o3 o [
2.8.26 PlcfSedcoovvvvvvvviiviiviiiieee
2.8.27 PlcfSpa ...coovvveviviiieeees
2.8.28 PlCfSpl v
2.8.29 PlcfTch .o
2.8.30 PlcfTxbxBkdcoooovvvvieiiinnn,
2.8.31 PIcfTXbxHArBKdcocevvvveeeenenn.
2.8.32 PICftxbXTXE oo
2.8.33 Plcfuim ...ccooovvviiiiiiiiiiiiiiieee
2.8.34 PICTWKBccvvvveeeeeeeeirviee.
2.8.35 PlcPcd ...ooovvvvvveviiiviiiieieeee
29 Basic TYPeS ...cccocvevriieeiiiieeeee
29.1 AC v e
29.2 Afd e e,
293 ASUMY ..o
294 ATNBE ..o
295 AtrdEXtracooeeeeeeeeeee

2.9.6 ATRDPOSt10ccovveerieeeieee e
29.7 ATRDPrel0cccocveieiiininens

2.9.8 BKC .o e
299 BKF oo e
2.9.10 BKFD .coviciiiiiiiiiiiiiiee
29.11 BKL .coooiiiiiiieveiies e
2.9.12 BKLD oo
29.13 BlockSelcccovviiiiiiiiiee
29.14 BOOI16 ...covviiiiii e
2.9.15 BOOI8 ..o
2.9.16 Brc .o
2.9.17 Bre80 ..o
2.9.18 Brc80MayBeNilccccoveiviieiiene
2.9.19 BrcCvOperandccccceevvciieeeennen.
2.9.20 BrcMayBeNilcccceeviienieeninen,
29.21 BrcOperandcccccovveeeniienenne
29.22 BreTypeccoovvevviiiiiiiiiee,
29.23 BXPapocccoviiiiiiiiiiiis

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

6/ 576

29.24 CAPI it e e e 215

2.9.25 CDB ..ot e e e 216
2.9.26 CellHideMarkOperandccccciiiiiiiiiiciiis e eees e 217
2.9.27 CellRANGEFITTEXL oiiiciiiiiiciiicciiieiiiies e sir e siee e eeesireeesareee e 217
2.9.28 CellRANGENOWTIAD cvviiiiciiicciiicciviiiies e eeeree e 217
2.9.29 CellRaNGETEXIFIOW ..oooiiiiiiiiiiiiiit e eereee e 218
2.9.30 CellRangeVertAlIigN ..o e e 218
2931 (O 1 = (@] o 1T = o Lo OSSP OPPR 218
2.9.32 CRPX oot s e e 219
2.9.33 ChpxFkp

2.9.34 (1o IR
2.9.35 CidAllocated

2.9.36 CidFci
2.9.37 CidMacro

2.9.38 CIX et

2.9.39 CMajorityOperand

2.9.40 Cmt

2941 CNFOperand

2.9.42 CNS

2.9.43

2.9.44

2.9.45

2.9.46 (35757 1@ o 1= = 1 o PP 227
2.9.47 CSYymbOIOpErandccccciiiiiiiiiiiies e e 228
2.9.48 CTB it vt e e 228
2.9.49 CTBWRAPPER.......ioiiiiiiiiiciiiiis vttt ettt 230
2.9.50 (OIS} (0] .44 11T o PSPPSR 230
2.9.51 DCS oot s e e 231
2.9.52 DefTableShd800perandcccocviiiiiiiiiiiis e e 232
2.9.53 DefTableShdOperandcccccccviiiiiiiiics e eenee e 232
2954 DiSpFIARMOPErand cccccociiiiiiiiiiciiiins e e 232
2.9.55 DOFT it s e e e 233
2.9.56 DOFIFSN oo s e ... 233
2.9.57 DOfIFSNFNM oo iies e ee e e 234
2.9.58 DOfIFSNNGME i e e 235
2.9.59 DOfIFESNP oo s e ..235
2.9.60 DOffFSNSphd ...t e 235
2.9.61 Dofrh oo

2.9.62 DofrRglstsf

2.9.63 DOfrt e

2.9.64 DPCID ..oceiviiiriieiceieneeins

2.9.65 DTTM it

2.9.66 FACTOIDINFO .oiiiiiiiiiiviiiiiiieiee et eeaveseeseesnee b enas 239
2.9.67 FaCtOIASPIS ooiiiiiiiiiiiiiiiiiiis e e 239
2.9.68 FarEastLayoutOperand cccccccciiiiiiiiiiiis e e 239
2.9.69 Fatl ot e e e 240
2.9.70 FBKF ottt ciricriiieis ettt e aeneens 241
29.71

2.9.72

2.9.73

29.74

2.9.75

2.9.76

2.9.77 .
2.9.78 FREDALA ...ccovviiiiiiiiiiiiiiiiiiiiis s eeeeeeeeeea e e 314
2.9.79 FEDAIABILS ..oecoiiiiiiiiiiciieiiiiie ettt eienie eeeee e 316
2.9.80 FRID oot vt e e 317
2.9.81 FEM i v v e e 318

71576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2.9.82 FEN s s e e 318

2.9.83 FIeldMapBasecccccccciciiiiiiiiiiiiiies et aeeriee e s 320
2.9.84 FieldMapDataltemccccoiiiiiiiiiiiiiiiiies s e 320
2.9.85 FIeldMapInfo oot e e 321
2.9.86 FieldMapTerminator ...t e eeerire e 322
2.9.87 FilterDataltem ..ot e eereeee e 322
2.9.88 o P 323
2.9.89 fldch v, 323
2.9.90 It e 323
29091 FNFB...ooooeeeeeee e 326
2.9.92 FNIF e 327
2.9.93 FNPI (o 327
2.9.94 FOBIH...ccvieieeieceeeee 328
2.9.95 FrameTextFlowOperand 328
2.9.96 FSDAP ..o 329
2.9.97 FsnK.....oocooieenen. 329
2.9.98 Fssd....oooovuvennen. 329
2.9.99 FssUnits 330
2.9.100 FTO oo 330
22 TN 0 O S 330
2.9.102 FtsWWidth_INdent ..ot s e 331
2.9.103 FtSWWIidth_Table .cccccciiiiiiciicciiiiies e eeree e 331
2.9.104 FtsWWidth_TablePartcccccciiiiiiiiiiiiiir e erreeeairaee 332
2.9.105 FTXBXNONREUSADIE ...ccccviiiiiiiiiiiiiiiies e ee e 332
2.9.106 FTXBXS coiiiiiiiiiieiiiiiiiiieiiies tteesieesnesieenineninens eessaeesseeesseesreearaean ... 333
2.9.107 FTXBXSREUSADIEcoccoiiiiiiiiiiiiiiiics s e 334
2.9.108 GOSL ccviiciiiiesiie it e eeree e eenees 334
2.9.109 GrammarSPIS ..cccccvcieiiiiiiie i e aereee e 335
2.9.110 grffldENd cooooieeciiie i s erree e ..335
2.9.111 grfhiC o e eeaes 336
2.9.112 GRFSTD...ccccoveveeecie e ... 337
2.9.113 GILPUPXSW oociiiiiiiiiiviieiiieiiis eevveeseesseesninesnnnsniees aveessseesnaeeeneesnaesnes 338
2.9.114 GrpPrIANIStA oo e e 338
2.9.115 HPFD oo e aerreesee e aareeens 338
2.9.116 HFDBILS ccoviiiiiiiiiiiiiiiiieiiiies et eeeaaee s e aaeearee e ... 339
2.9.117 HPIXSAr s e e ... 339
2.9.118 HreSiOPerandcccccociiiiiiiiiiiiiiies e e 340
22 TNt L T [o TS 340
72 TN 0 T | T 341
220 TN R | Y- OO 342
2.9.122 ISCIOITYPE oo et e s 346
2.9.123 HCFIrSILIM coiiiiiiiiciiiviiiis e eeeree e 346
b2 TR S (o ¢ OO 346
2.9.125 KME wiiiiiiiiiiiiiieeiiiiviee e aeneeeee e aees aaeeees 347
220 TRt 2 T S 347
2.9.127 KUl iooiiisiiivi it e arreenee e aveeaaes 348
b TR T - o 1S o PSP ... 348
2.9.129 LBCOPErandcccccciviiiiiiiiiiiiiis et e 349
2.9.130 349
2.9.131 350
2.9.132 .. 351
2.9.133 351
2.9.134 352
2.9.135 352
2.9.136 352
2.9.137 LPSIShIGIPPIl oo s eeree e 352
2.9.138 LPUPXCRPX tiiviiiiiiiiiiiciieiiiieiiis eerveeee e s siinsiiees areeenree e e aaa e 353
2.9.139 LPUPXCHPXRM oo avveertee e snnesiieees teeesteeenaesneaenreeens 353

8/ 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2.9.140
2.9.141
2.9.142
2.9.143
2.9.144
2.9.145
2.9.146
2.9.147
2.9.148
2.9.149
2.9.150
2.9.151
2.9.152
2.9.153
2.9.154
2.9.155
2.9.156
2.9.157
2.9.158
2.9.159
2.9.160
2.9.161
2.9.162
2.9.163
2.9.164
2.9.165
2.9.166
2.9.167
2.9.168
2.9.169
2.9.170
2.9.171
2.9.172
2.9.173
29.174
2.9.175
2.9.176
2.9.177
2.9.178
2.9.179
2.9.180
2.9.181
2.9.182
2.9.183
2.9.184
2.9.185
2.9.186
2.9.187
2.9.188
2.9.189
2.9.190
29.191
2.9.192
2.9.193
2.9.194
2.9.195
2.9.196
2.9.197

LPUPXPAPX ceviiiiiiiiiiiiiiiiiiieiiiiiiis evvviiiiie e e e s ssniiinnreeess eeeeeaeeaaaanneeeeaaasaeaanne 353
LPUPXPAPXRM oiiiiiiiiiiiiiiviiiiieiie et e 354
LPUPXRM Lo iiiiiiiiiiiis et nrriiiiniees eeeeee e e e e e e e e ..354
LPUPXTAPX wiviiiiiiiiiiiiiiiiieiiiiiiiiis tvvvciiineessessssninnnneeeess eeeeeessssasnnneeeaesssnnnnne 354
LPXCharBUffer9ccccciiiiiiiiiiiciiins et e 355
... 355
.. 356
.. 356
.. 357
.. 357
.. 358
MBACIONGME ..o s s 360
MACIONBIMES ... e e e 361
MathPrOperandcccccviiiiiiiiiieiiiiis et eiee e eeeeaie e 361
MCO oot s e e e 361
MDP .o s e e 362
MEPF . s s e aeneens 362
N1 PP 363
NIIPICFANOBINDALA ...cccvvviiiiiiiiiiiiiiies et nee eevieesreene e 363
NUMRM o, ... 364
NumRMOperand 366
OcxXINfO oo, ... 366
ODSOPIOpertyBaseccccccciviiiiiiiiiieiiiis et e 367
ODSOPIOpertyLargeccccociviieiiiiiiiiiiies v e 369
ODSOPropertyStandard ..o e e 369
ODT it vt s e 369
L@ 1 = £ of PP 370
ODTPEISISI2 ..ooiiiciiiiiiiiiiviiiies et e 371
OfficeArtClientAnchor —cccooveevieeieee. 372
OfficeArtClientData ccccceevercirnennnn, 372
OfficeArtClientTexXtboX —ccceevvveviienieeninen, 372
L@ 1 ToTY N (@o] 1 (=] o | (USROS 373
OffiCEANtWOrdDIaWiNg cccoevccveiiieviieiiieniiens eeviee s e sie e eeneeesaeenes 373
PANOSE ..ot vt e .. 374
PapXFKD oot s e ... 378
PapXINFKD oot e 379
PDhIGHOPErand ...t e e 379
PCU s e e e 380
PCOL oo e e s e 380
PChOTabsSAdd ..o e e 381
PChGTADSDEl ..ot i e 381
PChgTabsDelICIOSEccccveiiiiiiiiiiiiiiiis e e 381
PChgTabsOperandccccoiviiiiiiiiiies et eeeee e 382
PChgTabsPapXxOperandc.cccccccciiiiiiiiiis e e 383
PODAPPIYTO eviiiiiiiiiiiriiiiis e e 383
PObhOFSEtFIOM oot e e 383
PgbPageDepth ...t e e 383
PGPAITAY ...covoveeeiiiiieiieeeee
PGPINfO ...oeeeiiiiiiiiiiie
PGPOptions
PICF ...t
PICF_Shape
PICFANAOSfICEANDALA ..oocciiiiiciiic vt v e ree e veeanieee e 387
PICMID ..oiiiiiiiiiniiiiiiieiie et e s 388
PICTGISY vviiiiiiiiiiiiiiiiiie e e ... 390
PIAC oo e e e 390
L 11 1 OO 390
PIGOSI it s e, e 391

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2.9.198 PIGUIdUIM oo e e 391

2.9.199 PUKME oot e e e 392
2.9.200 PHLIO oot s e e 392
2.9.201 PHLSE coiiiiiciiiiiiiiiiiis e e e 392
2.9.202 PUMC woooiiiiiiiiiiiiciiiiiis s e e 393
2.9.203 PLRSID .ottt et e e 393
2.9.204 PMFS oo e e e 394
2.9.205 PMS .ot 396
2.9.206 PnFkpChpx 398
2.9.207 PnFkpPapx 398
2.9.208 PositionCodeOperandccccccivviiiieiiiiiiiiis e arreee s 398
2.9.209 PrCuiiiiiiiiiiiiiiiiiiieis s e e 399
2.9.210 PreDAta ...ccccoviciiiiiiiiciiiies e e e ... 399
2.9.211 PIDIVE i e e e 399
2.9.212 PrENVLANG ..ot e e 400
2.9.213 PrENVPOIT i e e .400
2.9.214 PIM oo e e e 400
2.9.215 PIMO oo e e e 400
2.9.216 PrML o e e e 402
2.9.217 PropRMAIK ...cocoiiiiiiiiiiiiiciiiiiis et e 402
2.9.218 PropRMarkOperandcccccccvviviiieniiiens eereee e eeeneeeneee e 403
2.9.219 ProteCtioNTYPE oiicviiiiiiiiiiiieiiiiiie et eeenee e 403
2.9.220 PRTI oot et e e 403
2.9.221 PTIStAINfOOPErand ... et e 404
2.9.222 RCA .ottt et e e 404
2.9.223 ReCIPIENIBASE ccoiiiiiiiiiiiiviiiiis e eeenee e 405
2.9.224 RecipientDatalteM ..o e e 405
2.9.225 ReCIPIENtINfO it e 406
2.9.226 ReCipientTErMINALOr ..ooccvviiiiiiiciiiciiieiiee e nnee eeeeesree s 407
2.9.227 RISt s e e 407
2.9.228 ROCAD .ot e e e 408
2.9.229 ROXOCXINFO oocviiiiiiiiiiiiiiiiiiis e e s 408
2.9.230 RMATHhreading ...ccccccoviiviiiiiiiiiis et eeenee e 409
2.9.231 RNC ittt et e e 413
2.9.232 ROULESIIP eiiiiiiiiiiiiiiiiiiiiiiiiit et e .. 414
2.9.233 ROULESIIPINFO oo e e 415
2.9.234 RouteSIipProtectionENUM ..oiiiiiiiies s e 416
2.9.235 SBkcOperandccc....... 416
2.9.236 SBOrientationOperand 416
2.9.237 SCImOperandcccccceeveriveeennnnnn. 416
2.9.238 SDMBINOPEraNd ..o e e 417
2.9.239 SDTI wovciiiiiiiiiiiiiiiciieiie e e e 417
2.9.240 SDTT oottt et e e 418
2.9.241 SDxa ColSpacingOperand ...cccccccviviiiiiiiiieiies e areeeas 418
2.9.242 SDxaColWidthOperandccccccciiiiiiiiiiiiis et e 418
2.9.243 S ..ottt e e e 419
2.9.244 SEIST oot e e e 419
2.9.245 SEPX i e e e 421
2.9.246 SFPCOPEIANG ooocciiiiiiiiiiiiie i e aeeeaee e 422
29247 Shd....cccooovviieiieiie 422
2.9.248 Shd80ccooveiverieriiinine 423
2.9.249 SHDOperand 424
2.9.250 SLNCOPErandcccccccvviiiiiiiiiiiiiiiie e e 424
2.9.251 SMAartTagDataccccccccviiiiiiiiiiiies e eeeee e 424
2.9.252 SortColumnANADIFECHON .eoovciiiiiiiiiciiirieies e e 425
2.9.253 SPA . e e e 425
2.9.254 SPelliNgSPIS oo e e 427
2.9.255 SPgbPropOperandccccccciciiicciiie s e 428

10 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2.9.256 SPLS ... s e e 428

2.9.257 SPPOPEraNdcccoiviiiiiiiiiiiiiiiiiie et arreee e s 429
2.9.258 STD oottt s e e 429
2.9.259 SHf oo e e 430
2.9.260 StATBASE ...covciiviiiiiiiiiiiiiis e e ... 430
2.9.261 StAfPOSI2000 ...ccooiiiiiiiiiiiiiiriiiiiieis e e 432
2.9.262 StdfPOSt20000rNONE ..ooiiiiiiiiiiiiiiiiiiens e e 433
2.9.263 StKCharGRLPUPXccccciiiiiiiiiiiiiiiiens et neeiees areeeee e 433
2.9.264 StkCharLPUPXGILPUPXRM ..o vt iiee e eveeaans 434
2.9.265 StkCharUpXGrLPUPXRM .ot et eiee e eeeenieaaene 434
2.9.266 StKLIStGRLPUPXoiiiiiiiiiiiiiiiiiiiiis ettt reeresee e 434
2.9.267 StKPAraGRLPUPX ...ccccciiiiiiiiiiiiiiiiins et e 435
2.9.268 StkParaLPUPXGILPUPXRM i et iea e eeeeaees 435
2.9.269 StkParaUpXGrLPUPXRM ..ot vt vee e e aeevsieneens 436
2.9.270 StKTADIEGRLPUPXooiiiiiiiiiiiiiiiiiiiis et nieneene eeeiesee e 436
2.9.271 STSH oot et e e 437
2.9.272 STSHI oot e e e 438
2.9.273 STSHIB oiiiiiiiiiviviiiieiies et e e ... 438
2.9.274 SESNIf (i e e e 439
2.9.275 SESNILSU oo e e s ... 440
2.9.276 SHDFASSOC i e e 440
2.9.277 SHBFAINBKMK ooviiiiiiiiis e e 441
2.9.278 SHBAULOCAPLION oo e eeree e 442
2.9.279 SHBBKMK oot e 443
2.9.280 Sttb fBKMKBPREPAIIS .cccvioiiiiiiiiiiiiiiieiiis vt nees e 447
2.9.281 SttbfBKMKFACIOId ..o e e 448
2.9.282 SHUDBKMKFCC oot e e 449
2.9.283 SHBBKMKPIOt oo e e 450
2.9.284 SHDBKMKSAL oo e e 451
2.9.285 SHBfCAPLON oo e e 452
2.9.286 SUDIFMN i e e ... 453
2.9.287 SUDIGISY oooiiiiiiiiiiiiiis s e s ..453
2.9.288 SHDOFNM s e ... 454
2.9.289 SHDIRFS i e e 455
2.9.290 SHBIRMArK oo e e 456
2.9.291 SHDGISYSLYIE oo e e 457
2.9.292 SHBLISINAMES i e 458
2.9.293 SHOPIOtUSEr oot s e 458
2.9.294 SHUDRQGIPIC oo e e 459
2.9.295 SHDSAVEIBY ..o e e 460
2.9.296 SHUDTIMDA ooooiiiiiiiies e e 461
2.9.297 SHDOWGE oo e e e 462
2.9.298 SIWUSEI it e e ... 462
2.9.299 SUY i e e e 463
2.9.300 TADIC ..o e e e 464
2.9.301 TABLC oo e e e 464
2.9.302 TableBordersOperandcccccocciiiiiiiiis s e 465
2.9.303 TableBordersOperand80 cccccciiviiiiiiiicis e e 466
2.9.304 TableBrcB80OPErandcccocccciiiiiiiiiiiiies e aeeaeeee e 466
2.9.305 TableBrcOperandcccccciiiiiiiics e e 467
2.9.306 TableCellWidthOperandcccccciiiiiiiiiiiics e e 468
2.9.307 TADIESEl oot e e ... 468
2.9.308 TableShadeOperandcccccccciiiiiiiiiie v e 468
2.9.309 TBC oot s e e 469
2.9.310 TBD oot s eereee e eenieans 469
2.9.311 TBDEHA .ocociiiiiiiiiiiiiiiiiies s e ... 470
2.9.312 TBKA oo e aeereee s eeaeas 471
2.9.313 TCBO wiccieiieiiiiiiiiiiieiiieiie e e e 472
11 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2.9.314 TCellBrcTypeOperand ...cccceiiiiiiiiiiiieiiie eeevriee e snees aeeeeaaeeeeas 473

P2 TR 3 I T I oo T 473
2.9.316 TCO255 .ot e e e 474
29317 TCORF ..ot e e e 474
2.9.318 TcgSttbf .o ... 475
2.9.319 TcgSttbfCore 475
29320 TCN oot e e 476
2.9.321 TDefTableOperandcccciiiiiiiies s e 476
2.9.322 TDxaColOperand 477
2.9.323 TextFIoWccccovviiiiiecnnene . ATT
2.9.324 TINSErtOPerandcccocceiiviiieiiciiiieeiiis v ereeaie e 478
29325 TIQ it e e e 478
2.9.326
2.9.327
2.9.328 TPIC coieiiiiiiiivieiiies s e s e 480
2.9.329 TplcBuildin 480
2.9.330 TpICUSEr ..oooeiiieeiiieeeeee ... 481
2.9.331 TEMDA oo e e 481
2.9.332 UFEL .ttt e e e 482
2.9.333 UID oottt e e eeeneeea 483
2.9.334 UIdSEl oot s e e 483
2.9.335 UIM ciiiiiiiiiiiiiiiiiiie s e e 483
2.9.336 UPXCNPX coiiiiiiiiiiiieiiiieiiiiiies et nes eaeeeseee e sae e ennaeas .. 484
2.9.337 UPXPAOAING .cveiiiiiiiiiiiiciiiiiiis e e 485
2.9.338 UPXPAPX ociiiiiiiiiic i e eerereee e ... 485
2.9.339 UPXRM i vt e e 486
2.9.340 UPXTAPX cccviiiiiiiieiiiienniiiiees eeereee e aerereee s ... 487
2.9.341 VertiCalAlIgN oo e e s 489
2.9.342 VerticalMergeFlag ..o e 489
2.9.343 VertMergeOperandcccccvcvvviiniiniiies e 489
2.9.344 Voot e e e 490
2.9.345 WHEIGhtADS ooiiiiiiiiiiiis e e 490
2.9.346 WHKB oot e e e 490
2.9.347 WPIMS oottt e e e e 491
2.9.348 WPMSAL ooiiiiiiiiiiciiiiiiiies e e ... 492
2.9.349 XAS e s s e 492
2.9.350 XAS_NONNEY .oovviiiiiiiiiiiiiiiie s e 492
2.9.351 XAS _PIUSONE oot et 492
2.9.352 XSDR it e e e 493
2.9.353 XSliiiiiiiiiiiiiiiiiiniiiiieis e e e 493
2.9.354 XSUZ it s s e 494
2.9.355 YAS s s e e 494
2.9.356 YAS_NONNEQ .iiiiiiiiiiiiciiieiiiiieiiies eerviceesree e enees e 494
2.9.357 YAS_PIUSONE oot e e 494
3 Structure EXamples it s e 495
3.1 EXample Of @ CIX ooiiciiiis e e 495
3.2 Example of @ SECHON .ot e e 500
3.3 Example of @ BOOKMArk .ooooiiiiiiiiiiiiiiiis s e 505
3.4 Example of @ PICBtECNPX oot et aeereeee e 510
3.5 Example of @ PICBIEPAPX oot e aeerieee s 514
3.6 Example of Table Row Properties ..ot e e 520
3.7 Example Of @ LISt oiiiiiis s e 531
4 Security CoNSIAErationS .o e eeeere e 542
41 Encryption and Obfuscation (Password to Open) e e 542
4.2 Write Reservation Password —cccciiiiiiiiis s e 542
5 Appendix A: Product Beha 170 P PPPR 543
12 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

6 Change TracCKinNg ccccciiiiiiiiiiiiiiiiieiiis e eereeeea e e e e e s naeeaeas 561
T INOEX o e e e 562
13 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

1 Introduction

This document specifies the Word Binary File Format (.doc) Structure, which defines the Word Binary

File Format (.doc). The Word Binary File Format is a collection of records and structures that specify

text, tables, fields, pictures, embedded XML markup, and other docu ment content. The content can be
printed on pages of multiple sizes or displayed on a variety of devices.

The Word Binary File Format begins with a master record named the File Information Block, which
references all other data in the file. By following | inks from the File Information Block, an application
can locate all text and other objects in the file and compute the properties of those objects.

Sections 1.7 and 2 of this specification are normative. All other sections and examples in this
specificatio n are informative.

11 Glossary
This document uses the following terms:
accelerator key : Any combination of keys that are pressed simultaneously to run a command.

allocated command : A built -in command that requires the user to specify a value for a parameter
when customizing the command.

anchor : A set of qualifiers and quantifiers that specifies the location of an element or object within
a document. These values are typically relative to another element or known location in the
document, such as the edge of a page or margin.

annotation bookmark : An entity in a document that is used to denote the range of content to
which a comment applies.

ASCIl : The American Standard Code for Information Interchange (ASCII) is an 8 -bit character -
encoding scheme based on the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that work with text. ASCII refers to a single 8 -bit
ASCII character or an array of 8 -bit ASCII characters with the high bit of each character set to
zero.

Augmented Backus -Naur Form (ABNF) : A modified version of Backus -Naur Form (BNF),
commonly used by Internet specifications. ABNF notation bal ances compactness and simplicity
with reasonable representational power. ABNF differs from standard BNF in its definitions and
uses of naming rules, repetition, alternatives, order -independence, and value ranges. For more

information, see RFC5234] .

auto spacing : A condition in which space is inserted automatically before and after a series of
consecutive paragraphs that do not have breaks or other items between them.

AutoCaption : Afeaturet hataddsa caption to an objectautomatically when the object is inserted
in a document.

AutoCorrect : A feature that corrects errors and makes other substitutions in a document
automatically by using default and user -defined settings.

auto -hyphenated : A condition of content where the distance between the text is measured and
maintained to force breaks automatically in elongated words that would not otherwise end
correctly on a line.

automark file : Afile that stores the text, location, and index level of a set of characters that were
marked for inclusion in a document index.

14 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

https://go.microsoft.com/fwlink/?LinkId=123096

AutoSummary : A process in which key points are identified in selected text by analyzing
document content. A score is assigne d to each sentence; sentences that contain frequently used
words are given a higher score.

AutoText : A storage location for text and graphics, such as a standard contract clause, that can be
used multiple times in one or more documents. Each selection of t ext or graphics is recorded as
an AutoText entry and assigned a unique name.

bar tab : A tab that specifies where to draw a vertical line or bar in a paragraph. It neither affects
the position of characters nor creates a custom tab stop in a paragraph.

bidi rectional compatibility : The ability to display and process text in two directions, right -to-left
and left -to-right.

big -endian : Multiple -byte values that are byte -ordered with the most significant byte stored in the
memory location with the lowest address

bookmark : An entity that is used in a document to denote the beginning and ending character
positions of specific text in the document, and optionally, metadata about that text or its
relationship to other referenced parts of the document.

caption :One or more characters that can be used as a label for display purposes or as an

identifier.
cascading style sheet (CSS) :An extensionto HTML that enables authors and users of HTML
documents to att ach style sheets to those documents, as described in [CSS-LEVEL1] and [CSS -

LEVELZ2]. A style sheet includes typographical info rmation about the appearance of a page,
including the font for text on the page.

cell : A box that is formed by the intersection of a row and a column in a worksheet or a table. A
cell can contain numbers, strings, and formulas, and various formats can be a pplied to that
data.

cell margin : A measurement of the distance between the border of a cell and the nearest pixel in
a character or digit of data in the cell. There are top, bottom, right, and left margins. See also
cell spacing

cell spacing : A measurement of the distance between the cells of a table or worksheet. Most
tables and worksheets are implemented with contiguous cells, in which case the cell spacing
value is O (zero). See also cell margin

CGAPI : An API that is implemented by grammar checkers that have been licensed to Microsoft
Corporation by external vendors.

chapter numbering : A page numbering format in which pages are numbered relative to the
beginning of a chapter within a document instead of the beginning of the document. The chapter
number is typically included in a page number; for example "3 T 2,"where "3"is the chapter
number and "2" is the number of that page within that chapter.

character pitch : A quality that measures the number of characters that can be printed in a
horizontal inch. Pitch is typically used to measure monospace fonts.

character set : A mapping between the characters of a written language and the values that are
used to represent those characters to a computer.

character unit : A horizontal unit of measurement that is relative to the document grid and is used
to position contentinad ocument.

class identifier (CLSID) : A GUID that identifies a software component; for instance, a DCOM
object class or a COM class.

15 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

https://go.microsoft.com/fwlink/?LinkId=99527
https://go.microsoft.com/fwlink/?LinkId=114090
https://go.microsoft.com/fwlink/?LinkId=114090

code page :An ordered set of characters of a specific script in which a numerical index (code - point
value) is associated with each character. Code pages are a means of providing support for
character sets and keyboard layouts used in different countries. Devices such as the display
and keyboard can be configured to use a specific code page and to switch from one code page
(such as the United States) to another (such as Portugal) at the user's request.

Component Object Model (COM) : An object -oriented programming model that defines how
objects interact within a single pro cess or between processes. In COM, clients have access to an
object through interfaces implemented on the object. For more information, see MS -DCOM].

connection string : A series of arguments, delimited by a semicolon, that defines the location of a
database and how to connect to it.

custom toolbar . Atype of toolbar that contains a user -defined set of controls and is not included
in an application by default. A custom toolbar has a toolbar identifier value of "1".

custom toolbar control . A user -defined control that can be added to a toolbar. A custom toolbar
control has a toolbar control identifier (TCID) value of "1" and can be one of the following
types of controls: ActiveX, Button, ComboBox, DropDown, Edit, or Popup.

deletion point : A po sition between two existing characters, or a position before or after a
character, where text was removed. If a caret is positioned at a deletion point, the point can
retain unique formatting and that formatting can be reapplied to any text that is inserte d at the
deletion point.

digital signature : A value that is generated by using a digital signature algorithm, taking as input
a private key and an arbitrary -length string, such that a specific verification algorithm is
satisfied by the value, the input str ing, and the public key corresponding to the input private
key.

document : An object in a content database such as a file, folder, list, or site. Each object is
identified bya URI .

document grid : A feature that enables the precise layout of full -width East Asian language
characters by specifying the number of characters per line and the number of lines per page.

document template : A file that serves as the basis for new documents.

East Asian char acter : A character that is part of the Simplified Chinese, Traditional Chinese,
Japanese, or Korean character set

East Asian language : A spoken or written communication that consists of words t hat are used
within the grammatical and syntactic structure of Simplified Chinese, Traditional Chinese,
Japanese, or Korean.

East Asian line breaking rules : A set of algorithms that define how text is parsed and displayed
to ensure that line breaks and wor d wraps follow the rules of various East Asian languages,
including Simplified Chinese, Traditional Chinese, Japanese, and Korean.

end of cell mark . A character with a hexadecimal value of "0x07" that is used to indicate the end
of a cell in a table.

end o frowmark :The combination of a character, hexadecimal value of "0x07", and a paragraph
property, sprmPFTtp, that is used to indicate the end of a row in a table.

endnote : A note that appears at the end of a section or document and that is referenced by text in
the main body of the document. An endnote consists of two linked parts, a reference mark
within the main body of text and the corresponding text of the note.

endnote continuation notice : A set of characters indicating that an endnote continues to the
next page. The default notice is blank.

16 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

%5bMS-DCOM%5d.pdf#Section_4a893f3dbd2948cd9f43d9777a4415b0

endnote continuation separator : A set of characters that indicates the end of document text on
a page and the beginning of endnotes that continue from the preceding page.

endnote separator . A set of characters that separates document text from endnotes about that
text. The default separator is a horizontal line.

field : An element or attribute in a data source that can contain data.

field type : A name that identifies the action or effect that a field has within a document. Examples
of field types are Author, Page, Comments, and Date.

file allocation table (FAT) : A data structure that the operating system creates when a volume is
format ted by using FAT or FAT32 file systems. The operating system stores information about
each fileinthe FAT so that it can retrieve t he file later.

footer : One or more lines of text in the bottom margin area of a page in a document or a slide in a
presentation. A footer typically contains elements such as the page number and the name of the
file.

footnote : A note that appears at the end of a page, section, chapter, or publication. It explains,
comments on, or provides references for text in the main body of a document. A footnote
consists of two linked parts, a reference mark within the main body of the document and the
corresponding tex t of the note.

footnote continuation notice : A set of characters indicating that a footnote continues to the next
page. The default notice is blank.

footnote continuation separator : A set of characters that indicates the end of document text on
a page and the beginning of footnotes that continue from the preceding page.

footnote separator : A set of characters that separates document text from footnotes about that
text. The default separator is a horizontal line.

form field : A data -entry area on a webpage, d ocument, or form.

format consistency checker : An application that applies a wavy blue underline to text where the
formatting is similar, but not identical, to comparable text in a document.

format consistency - checker bookmark : An entity in a document that is used to denote text
where the formatting is similar, but not identical, to comparable text in the document, and the
user indicated that the formatting inconsistency is not to be flagged.

frame : A space, displayed onscreen as a box, that contains a speci fic element of a publication.

full save : A process in which an existing file is overwritten with all of the additions, changes, and
other content in a document.

full screen view : A document view that expands the display of a document to fill the computer
screen. The view hides menus, toolbars, and taskbars.

grammar checker : An application that uses default or user -defined settings to search for
grammatical errors in a document.

gra mmar checker cookie : An entity in a document that a grammar checker uses to denote a
possible grammatical error in the document and data about that error.

gutter : An area above a column heading and to the left of a row heading. A gutter typically
displays outline symbols that are used to expand and collapse groups of cells.

gutter margin : A margin setting that adds extra space to the side or top margin of a document
that will be printed and bound. A gutter margin ensures that text is not obscured by the bin ding.

17 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Hangul -Hanja converter (HHC) : A collection of dictionaries that readers can use to search for
and select a Hanja word that corresponds to a specified Hangul word, or a Hangul word that
corresponds to a specified Hanja word.

header :Aline, orlines, of content in the top margin area of a page in a document or a slide in a
presentation. A header typically contains elements such as the title of the chapter, the title of
the document, a page number, or the name of the author.

heading style : Atype of pa ragraph style that also specifies a heading level. There are as many as
nine built -in heading styles, Heading 1 through Heading 9.

horizontal band : A set of rows in a table that are treated as a single unit, typically to ensure the
consistency of the layou t and the format.

HTML image map : An image that contains more than one hyperlink on a webpage. Clicking
various parts of the image links the user to other resources on another part of the page, a
different page, or a file.

hybrid list : Anine -levellistth atis exposed in the user interface as a collection of nine, one -level
lists, instead of a single nine -level list.

Hyperlink view : A document view that displays a document as it would appear as a webpage.

Hypertext Markup Language (HTML) : An application of the Standard Generalized Markup
Language (SGML) that uses tags to mark elements in a document, as described in HTML] .

incremental save : A process in which an existing file is modified to reflect only additions or
changes to a document, while maintaining all other existing content in the file.

Input Method Editor (IME) : An application that is used to enter characters in written Asian
languages by using a standard 101 -key keyb oard. An IME consists of both an engine that
converts keystrokes into phonetic and ideographic characters and a dictionary of commonly used
ideographic words.

insertion point : A position between two existing characters, or a position before or after a
char acter, where text can be inserted. If a caret is positioned at an insertion point, the point can
have unique formatting, which is applied to any text that is inserted at the insertion point.

kinsoku : A rule set in the Japanese language that is used to dete rmine characters that are not
permitted at the beginning or end of a line.

Kumimoji : A text layout setting that displays annotative characters inline next to the text to which
they apply. It is typically used with East Asian text to indicate pronunciation.

labels document : A document that stores label design and printing information in conjunction
with a mail merge document.

language auto -detection : A process that automatically determines the language code identifier
(LCID) for text in a document.

left -to -right : A reading order in which characters in words are read from left to right, and words
are read from left to right in sentences.

line numbers : A formatting property in which each line of text is prefixed with a sequential
number as part of a larger coll ection of lines on a page.

line unit : A vertical unit of measurement that is relative to the document grid and is used to
position content in a document.

list level : A condition of a paragraph that specifies which numbering system and indentation to
use, r elative to other paragraphs in a bulleted or numbered list.

18 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

https://go.microsoft.com/fwlink/?LinkId=89880

listtab : A tab stop that is between a list number or bullet and the text of that list item.

litle -endian : Multiple -byte values that are byte -ordered with the least significant byte stored in
the memory location with the lowest address.

logical left : A position that is relative to the language orientation of a document. Logical left

means left, except in a right -to - left language where it means right. Also referred to as leading
edge.
logical right : A position that is relative to the language orientation of a document. Logical right
means right, except in a right -to - left language where it means left. Also referred to as trailing
edge.
macro : A set of instructions that are recorded or written, and th en typically saved to a file. When a

macro is run, all of the instructions are performed automatically.

mail merge : The process of merging information into a document from a data source, such as an

address book or database, to create customized documents, such as form letters or mailing
labels.
mail merge data source : Afile or address book that contains the information to be merged into a

document during a mail merge operation.

mail merge header document : A file that contains the names of the fields ina m ail merge data
source.

mail merge main document : A document that contains the text and graphics that are the same
for each version of the merged document, such as the return address or salutation in a form
letter.

manifest : A file that stores metadata abou t an expansion pack, such as the name of the expansion

pack, the files and resources that are included in the expansion pack, and the dependencies that
it has on other files and components.

master document : A document that refers to or contains one or more other documents, which
are referred to as subdocuments. A master document can be used to configure and manage a
multipart document, such as a book with multiple chapters.

menu toolbar : A type of toolbar that is displayed in an application window, typicall y at the top,
and provides a set of menu controls from which the user can select. Activating a control on the
toolbar displays a list of commands in that menu, and the menu remains open until the user
closes it or chooses a menu command.

message identifier : A string that uniquely identifies an email message.

NLCheck : An API that is implemented by grammar checkers that were developed by Microsoft
Corporation.

Normal template : The default globalt emplate that is used for any type of document. Users can

modify this template to change default document formatting, or content for any new document.

Normal view : A document view that displays text formatting and a simplified page layout of a
document. The Normal view hides some layout elements such as the header and footer.
Referred to as Draft view in Microsoft Office Word 2007 and Microsoft Word 2010.

NT file sys tem (NTFS) : A proprietary Microsoft file system. For more information, see MSFT -
NTES].

number text : A string that is calculated automatically and represents the numbering scheme and
position of a paragraph in a bulleted or numbered list.

19 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

https://go.microsoft.com/fwlink/?LinkId=90200
https://go.microsoft.com/fwlink/?LinkId=90200

Object Linking and Embedding (OLE) : A technology for transferring and sharing information
between applications by inserting a file or part of a file into a compound document. The inserted
file can be eithere mbedded or linked. See also embedded object and linked object.

OLE compound file : A form of structured storage, as described in MS - CEB]. A compound file
allows independent stora ges and streams to exist within a single file.

OLE control : A reusable software component that is designed to work in containers that support

Object Linking and Embedding (OLE) 2.0.
OLE object : An object that supports the Object Linking and Embedding (OLE) protocol.
outline level : A type of paragraph formatting that can be used to assign a hierarchical level, Level

1 through Level 9,t o paragraphs in a document. After outline levels are assigned, an outline of
a document can be viewed by using Outline view, the document map, or the navigation pane.

page border : Aline that can be applied to the outer edge of a page in a document. A page border
can be formatted for style, color, and thickness.

paragraph mark : An entity in a document that is used to denote the end of a paragraph and has
a Unicode character code of 13.

paragraph style : A combination of character - and paragraph -formatting ch aracteristics that are
named and stored as a set. Users can select a paragraph and use a paragraph style to apply all
of the formatting characteristics to the paragraph simultaneously.

personal style : Alist of formatting settings that is applied to a docu ment or an Internet message
when it is opened or created by a specific user on a specific computer. The settings are
associated with a user and a computer.

physical left : A leftward position that is not relative to the language orientation of document
cont ent. See also logical left

physical right : A rightward position that is not relative to the language orientation of document
content. See also logical right

point : A unit of measurement for fonts and spacing. A point is equal to 1/72 of an inch.

policy labels : A set of fields that stores metadata about a document and is defined by an
information management policy.

primary shortcut key : The default combination of keys that are pressed simultaneously to
execute a command. See also secondary shortcut key

Print Preview view : A document view that displays a d ocument as it will appear on a printed
page.

ProgIlD : An identifier that is used by the Windows registry to uniquely identify an object and is in
the form OLEServerName.ObjectName, for example, "Excel.Sheet" or "PowerPoint.Slide."

property revision mark : A type of revision mark indicating that one or more formatting
properties, such as bold, indentation, or spacing, changed.

range -level protection . A mechanism that permits users to change only specific parts of a
protected document while restricting access to all other parts of the document. See also range -
level protection bookmark

range -level protection bookmark : An entity in a document that is used to denote a range of
content that is an exception to a document -level protection setting.

20 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b

Reading Layout view : A document view that displays a document as it will appear on a printed
page and is optimized for reading a document on a computer screen. Two pages are displayed
simultaneously, side -by-side.

repair bookmark : An entity in a document that is used to denote text that was changed
automatically during a document repair operation.

rich tex t: Text that is formatted in the Rich Text Format, as described in MSFT -RTF].
Rich Text Format (RTF) : Text with formatting as described in [MSFT -RTF].
right -to -left : Areading and display o rder that is optimized for right -to - left languages.

Ruby : A text layout setting that displays annotative characters above or to the right of the text to
which it applies. It is typically used in East Asian documents to indicate pronunciation or to
provide a brief annotation.

ScreenTip : Asmall pop -up window that provides brief context -sensitive help when users point to
an item.
secondary shortcut key : A user -defined combination of keys that are pressed simultaneously to

execute a command. See also primary shortcut key

section : A portion of a document that is terminated by a section break or the end of the
document. A section can store unique, page -level formatting, such as page size and orientati on,
and other formatting features such as headers and footers.

section break : A special character that terminates a section and acts as a repository for the
properties of the specified section.

shading pattern : A background color pattern against which char acters and graphics are displayed,
typically in tables. The color can be no color or it can be a specific color with a transparency or
pattern value.

smarttag : A feature that adds the ability to recognize and label specific data types, such as
people's na mes, within a document and displays an action button that enables users to perform
common tasks for that data type.

smart tag bookmark : An entity in a document that is used to denote the location and presence of
a smart tag.
smart tag recognizer :Anadd -in that can interpret a specific type of smart tag, such as an

address or a financial symbol, in a document and display an action button that enables users to
perform common tasks for that data type.

South Asian language : A spoken or written communication co nsisting of words that are used
within the grammatical and syntactic structure of a language of southern Asia, such as Hindi,
Urdu, or Tamil.

structured document tag : An entity in a document that is used to denote content that is stored
as XML data.

structured document tag bookmark : An entity in a document that is used to denote the location

and presence ofa structured document tag

style : A set of formatting options that is applied to text, tables, charts, and other objects in a
document.

subdocument : A document that can be referred to or inserted into another document.
Subdocuments can be referenced by master documents and other sub documents.

21 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

https://go.microsoft.com/fwlink/?LinkId=120924

table depth : An indicator that specifies how tables are nested and how to display paragraphs
within those tables. The depth is derived from values that are applied to paragraph marks, cell
marks, or table -terminating paragraph marks. A paragraph that is not in a table has a table
depth of "0" (zero); a nested table has a table depth of one greater than the cell that contains
it.

table style : A set of formatting options, such as font, border formatting, and row banding, that
are applied to a table . The regions of a table, such as the header row, header column, and data
area, can be variously formatted.

Tatenakayoko : A text layout setting that displays a range of text perpendicular (horizontal) to the
flow of other text (vertical).

toolbar : A row, column, or block of controls that represent tasks or commands within an
application. A toolbar can be either a menu toolbar, which provides access to menu commands,
or a basic toolbar, which contains buttons that provide shortcuts to tasks that are frequently
accessed from menus.

toolbar control : An object that appears on a toolbar and enables user interaction or input,
typically to initiate an action, display information, or set values.

toolbar control identifier (TCID) : An integer that identifies a specific control on a toolbar.
toolbar delta : A file component that stores a modification that a user made to a built -in toolbar.
Stored modifications include adding, changing, or removing a control from a built -in toolbar.

TrueType font : A type of comput er font that can be scaled to any size. TrueType fonts are clear
and readable in all sizes and can be sent to any printer or other output device.

twip : A unit of measurement that is used in typesetting and desktop publishing. It equals one -
twentieth of a p rinter's point, or 1/1440 of an inch.

Unicode : A character encoding standard developed by the Unicode Consortium that represents
almost all of the written languages of the world. The Unicode standard [UNICODES.0.0/2007]
provides three forms (UTF -8, UTF-16, and UTF -32) and seven schemes (UTF -8, UTF-16, UTF -16
BE, UTF-16 LE, UTF -32, UTF -32 LE, and UTF -32 BE).

Uniform Resource Identif ier (URI) : A string that identifies a resource. The URI is an addressing
mechanism defined in Internet Engineering Task Force (IETF) Uniform Resource Identifier (URI):
Generic Syntax [RFC3986].

Universal Input Method (UIM) : An application or service that provides multilingual support and
delivers text services such as keyboard processors, handwriting recognition, and speech
recognition

Vector Markup Language (VML) : A system of marking up or ta gging two -dimensional vector

graphics for publication on the World Wide Web. VML graphics are scalable and editable, and
typically require less disk space and less time to download.

vertical band : A set of columns in a table that are treated as a single un it, typically for the
purpose of layout and formatting consistency.

virtual key code : A symbolic constant name, hexadecimal value, or mouse or keyboard equivalent
that provides a hardware - and language -independent method of identifying keyboard keys. Each
virtual key code represents a unique keyboard key and also identifies the purpose of that key.
The keyboard driver provides one or more keyboard layouts that maps keyboard scan codes to
the appropriate virtual key codes.

Visual Basic for Applications (VBA) :Amacro -based programming language that derives from
Microsoft Visual Basic and can be used to customize and extend an application. Unlike Visual

22 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

https://go.microsoft.com/fwlink/?LinkId=154659
https://go.microsoft.com/fwlink/?LinkId=90453

Basic, Microsoft Visual Basic for Applications (VBA) code and macros can be run only from within
a host appl ication that supports VBA.

Warichu : A text layout setting that creates two sublines within a line and stacks text equally
between those sublines. One subline contains the text proper and the other subline contains
comments, notes, and annotations about tha t text.

Web Layout view : A view of a document as it might appear in a web browser. For example, the
document appears as only one page, without page breaks.

word wrap : The process of breaking lines of text automatically to stay within the page margins of
a document or window boundaries.

Word97 compatibility mode : An application mode that prevents users from applying formatting
and other document features and settings that are not supported in Microsoft Word 97 or earlier
versions of Word.

write -reservationp assword : A sequence of characters that need to be entered to modify a

document.
XML : The Extensible Markup Language, as described in XML1.0] .
XML schema definition (XSD) : The World Wide Web Consortium (W3C) standard language that

is used in defining XML schemas. Schemas are useful for enforcing structure and constraining
the types of data that can be used validly within other XML documents. XML schema definition
refers to the fully specified and currently recommended standard for use in authoring XML
schemas.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [REC2119] . All statements of opt ional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the sect ion numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata .

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com . We will
assist yo u in finding the relevant information.

[ECMA-376] ECMA International, "Office Open XML File Formats", 1st Edition, ECMA -376, December
2006, http://www.ecma _ -international.org/publications/st andards/Ecma_-376.htm

[Embed -Open -Type - Format] Nelson, P., "Embedded OpenType (EOT) File Format", W3C Member
Submission, March 2008, http://www.w3.0rg/Submission/2008/SUBM -EOT-20080305/

[MC - CPB] Microsoft Corporation, "Code Page Bitfields", http://msdn.microsoft.com/en -
us/library/dd317754.aspx

[MC - FONTSIGNATURE] Microsoft Corporation, "FONTSIGNATURE", http://msdn.microsoft.com/en -
us/library/dd318064.aspx

[MC - USB] Microsoft Corporation, "Unicode Subset Bitfields", http://msdn.microsoft.com/en -
us/ library/ms776439.aspx

23 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

https://go.microsoft.com/fwlink/?LinkId=90599
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=118624
https://go.microsoft.com/fwlink/?LinkId=206627
https://go.microsoft.com/fwlink/?LinkId=206627
https://go.microsoft.com/fwlink/?LinkId=115097
https://go.microsoft.com/fwlink/?LinkId=115097
https://go.microsoft.com/fwlink/?LinkId=115096
https://go.microsoft.com/fwlink/?LinkId=115096

[MS - CFB] Microsoft Corporation, * Compound File Binary File Format

[MS -CTDOC] Microsoft Corporation, " Word Custom Toolbar Binary File Format

[MS -DOCX] Microsoft Corporation, " Word Extensions to the Office Open XML (.docx) File Format

[MS -DTYP] Micr osoft Corporation, " Windows Data Types ".

[MS - EMF] Microsoft Corporation, " Enhanced Metafile Format

[MS - LCID] Microsoft Corporation, " Windows Language Code Identifier (LCID) Reference

[MS - ODRAW] Microsoft Corporation, ' Office Drawing Binary File Format

[MS - OE376] Microsoft Corporation, " Office Implementation Infor mation for ECMA -376 Standards
Support ".

[MS - OFFCRYPTO] Microsoft Corporation, " Office Document Cryptography Structure

[MS - OLEPS] Microsoft Corporation, " Object Linking and Embedding (OLE) Property Set Data

Structures ".

[MS -OSHARED] Microsoft Corporation, " Office C ommon Data Types and Objects Structures

[MS - OVBA] Microsoft Corporation, " Office VBA File Format Structure

[MS -WMF] Microsoft Corporation, " Windows Metafile Format ".

[PANOSE] Hewlett -Packard Corporation, "PANOSE Classification Metrics Guide", February 1997,
http://www.panose.com

[RFC1950] Deutsch, P., and Gailly, J -L., "ZLIB Compressed Data Format Specification version 3.3",
RFC 1950, May 1996, http://www.ietf.org/rfc/rfc1950.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc __ -editor.org/rfc/rfc2119.txt

[RFC2822] Resnick, P., Ed., "Internet Message Format", RFC 2822, April 2001,
http://www.ietf.org/rfc/rfc2822.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.rfc __-editor.org/rfc/rfc4234.txt

1.2.2 Informative References

[MS -OLEDS] Microsoft Corporation, " Object Linking and Embedding (OLE) Data Structures

[MSDN - FONTS] Microsoft Corporation, "About Fonts", http://msdn.microsoft.com/en -
us/library/dd162470(VS.85).aspx

1.3 Overview

1.3.1 Characters

The fundamental unit of a Word binary file is a character. This includes visual characters such as

letters, numbers, and punctuation. It also includes formatting characters such as paragraph marks ,
end of cell marks , line breaks, or section breaks . Finally, it includes anchor characters such as
footnote reference characters, picture anchors, and comment anchors.

24 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
%5bMS-CTDOC%5d.pdf#Section_aff21c961b434bcf8c8a677e012c7e6a
%5bMS-DOCX%5d.pdf#Section_b839fe1fe1ca4fa68c265954d0abbccd
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-EMF%5d.pdf#Section_91c257d7c39d4a369b1f63e3f73d30ca
%5bMS-LCID%5d.pdf#Section_70feba9f294e491eb6eb56532684c37f
%5bMS-ODRAW%5d.pdf#Section_8560795e77594745838ff7f2ef2f1872
%5bMS-OE376%5d.pdf#Section_db9b9b72b10b4e7e844c09f88c972219
%5bMS-OE376%5d.pdf#Section_db9b9b72b10b4e7e844c09f88c972219
%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083
%5bMS-OLEPS%5d.pdf#Section_bf7aeae8c47a49399f45700158dac3bc
%5bMS-OLEPS%5d.pdf#Section_bf7aeae8c47a49399f45700158dac3bc
%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d
%5bMS-OVBA%5d.pdf#Section_575462babf6741909facc275523c75fc
%5bMS-WMF%5d.pdf#Section_4813e7fd52d04f42965f228c8b7488d2
https://go.microsoft.com/fwlink/?LinkId=115095
https://go.microsoft.com/fwlink/?LinkId=90301
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90385
https://go.microsoft.com/fwlink/?LinkId=90462
%5bMS-OLEDS%5d.pdf#Section_85583d21c1cf4afea35fd6701c5fbb6f
https://go.microsoft.com/fwlink/?LinkId=90008
https://go.microsoft.com/fwlink/?LinkId=90008

Characters are indexed by their zero -based Character Position ,or CP (section 2.2.1). This
documentation is generally concerned with CPs (section 2.2.1), not with the underlying text. Section
2.4.1 specifies an algorithm for determining the text at a particular CP (section 2.2.1), but this is just
one of many pieces of information an application might look for. The reader needs to understand that

this documentation is much more about logical characters in a document than about physical bytes in

a file .

132 PLCs

Many features of the Word Binary File Format pertain to a range of CPs (section 2.2.1). For example,
a bookmark isarange of CPs (section 2.2.1) that is named by the document author. As another

example, a field is made up of three control characters with ranges of arbitrary document content

between them.

The Word Binary File Format uses a PLC structure (se ction 2.2.2) to specify these and other kinds of
ranges of CPs (section2.2.1). A PLC (section 2.2.2) is simply a mapping from CPs (section 2.2.1) to
other, arbitrary data.

1.3.3 Formatting

The formatting of characters, paragraphs, sections, tables, and pictures is specified as a set of

differences in formatting from the default formatting for these objects. Modifications to individual

properties are expressed using a Prl. A Prlis a Single Property Modifier, or Sprm , and an operand that
specifies the new value for the property. Each property has (at least) one unique Sprm that modifies

it. For example, sprmCFBold modifies the bold formatting of text, and sprmPDxaleft modifies the
logical left indent of a paragraph.

The final set of properties for text, paragraphs, and tables comes from a h ierarchy of styles and from
Prl elements applied directly (for example, by the user selecting some text and clicking the Bold

button in the user interface). Styles allow complex sets of properties to be specified in a compact way.

They also allow the user to change the appearance of a document without visiting every place in the
document where a change is hecessary. The style sheet for a document is specified by a STSH, as
defined in section 2.9.27 1.

See section 2.4.6.6 for the algorithm that determines the complete set of formatting for a character,
paragraph, table, or picture.

See section 2.8.26 for the structure used to determine the boundaries of sections and the location of
their properties.

See section 2.6 for the complete list of Sprms.

1.3.4 Tables

A table consists of a set of paragraphs that has a particular set of properties applied. There are special

characters that denote the ends of table cells and the ends of table rows, but ther e are no characters
to denote the beginning of a table cell or the end of the table as a whole. Tables can be nested inside

other tables.

Section 2.4.3 provides an overview of tables, and Sections 244 and 2.4.5 specify algorithms for
determining the boundaries of a table cell and table row, respectively.

1.3.5 Pictures

Pictures in the Word Binary File format can be either inline or floating. An inline picture is represented
by a character whose Unicode value is 0x0001 and has sprmCFESpec applied with a value of 1 and
sprmCPicLocation applied to specify the location of the picture data. A floating picture is represented

25 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

by an anch or character with a Unicode value of 0x0008 with sprmCFSpec applied with a value of 1. In
addition, floating pictures are referenced by a PlcfSpa structure which contains additional data about
the picture. A floating picture can appear anywhere on the same page as its anchor. The document

author can choose to have the floating picture rearrange the text in various ways or to leave the text

asis.

136 TheFIB

The main stream of the Word Binary File Format begins with a File Information Block, or

specifies the locations of all other data in the file. The locations are specified by a pair of integers, the
first of which specifies the location and the second of which specifies the size. These integers appear in
substructures of the FIB such as the FibRgFcLcb97 . The location names are prefixed with fc ; the size
names are prefixed with Icb .

FIB. The FIB

1.3.7 Byte Ordering

Some computer archite ctures number bytes in a binary word from left to right, which is referred to as

big -endian . The bit diagram for this documentation is big -endian. Other architectures number the
bytes in a binar y word from right to left, which is referred to as littte -endian . The underlying file
format enumerations, objects, and records are little -endian.

Using big -endian and little -endian methods, the number 0x12345678 would be stored as shown in the
following table.

Byte order Byte 0 Byte 1 Byte 2 Byte 3
Big-endian 0x12 0x34 0x56 0x78
Little -endian 0x78 0x56 0x34 0x12

Unless otherwise specified, all data in the Word Binary File Format is stored in little -endian format.

1.3.8 General Organization of This Documentation

Section 2 of this documentation is arranged with high
specifications.

-level overviews followed by detailed

Sections 2.1 through 2.4 provide general specifications of structures and concepts that recur in this
documentation. Read these sections from beginning to end before delving deeper into section 2. The
most important part of this documentation is section 2.4, which specifies algorithms for retrieving
document content and determining its properties.

Section 2.5 provides a complete specification of the
structures.

FIB, including links to all referenced data

Section 2.6 provides a complete list of Sprm_ elements and their operands; it can be considered a
complete list of the character, paragraph, table, and section properties supported by the Word Binary

File Format. Note that most picture properties are not represented by Sprm elem ents. [MS-ODRAW
specifies most picture properties. Each Sprm definition specifies the default value for the property that

it modifies.

Section 2.7 provides a specification of document -level properties

Section 2.8 provides a complete specification of all PLC types. Finally, section 2.9 provides
specifications for data types referenced by previous sections. Sections 2.8 and 2.9 are intended to be
read as the destination of links from other secti ons; they are not intended to be read straight through.

26 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

%5bMS-ODRAW%5d.pdf#Section_8560795e77594745838ff7f2ef2f1872

Section 3 provides examples that relate to the algorithms in section 2.4 and examples of bookmarks

(1) and sections. These examples are intended to illustrate the concept of property storage, PLCs, an d
numbering, and to demonstrate the mapping between CP (section 2.2.1) and underlying text (as

specified in section 2.4.1).

Section 4 di scusses encryption, obfuscation, and other security issues relating to the Word Binary File
Format.

Section 5 is a list of version -specific behaviors. It is intended to be read in the context of specifications
in section 2, not as a stand -alone section. Sp ecifications in section 2 provide links to the relevant
items in section 5.

1.4 Relationship to Protocols and Other Structures

The Word Binary File Format is an OLE compound file as specified in [MS -CFB]. It is dependent on
the structures defined in the following references:

MS -ODRAW] for the persistence format for shapes.

MS -OVBA] for the persistence format for macros.

[MS - OFFCRYPTOQO] for the persistence format for document signing, information rights
management, document encryption, and obfuscation.

A [MS-OSHARED] for the persistence format for additional common structures.

> >

The Word Binary File Format is superseded by ECMA-376] .

15 Applicability Statement

This document specifies a persistence format for word processing document content and templates,
which can include text, images, tables, custom XML schemas applied to the content, and page layout
information. This persistence format is applicable when the document cont ent is intended to flow
across a set of pages as necessary for a particular media, and when the document can be printed. This
persistence format is not applicable when exact reproduction of a specific representation of the

content across various media and devices is desired.
This persistence format is applicable for use as a stand -alone document, and for containment within
other documents as an embedded object as specified by M S-OLEDS].

This persistence format provides interoperability with applications that create or read documents
conforming to this structure.

1.6 Versioning and Localization

This document covers versioning issues in the fol lowing areas:

Structure Versions: There is only one version of the Word Binary File Format structure.

Localization: This structure defines no general locale -specific processes or data. Locale -specific
variations for specific field values within the structu re are specified in the definition of the affected

field in Section 2.

1.7 Vendor -Extensible Fields

This persistence format can be extended by storing information in streams and storages that are not
specified in section 2. Implementations are not required to preserve or remove additional streams or
storages when modifying an existing document.

27 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
%5bMS-ODRAW%5d.pdf#Section_8560795e77594745838ff7f2ef2f1872
%5bMS-OVBA%5d.pdf#Section_575462babf6741909facc275523c75fc
%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083
%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d
https://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-OLEDS%5d.pdf#Section_85583d21c1cf4afea35fd6701c5fbb6f

2 Structures

2.1 File Structure

A Word Binary Fileisan OLE compound file as specified by [MS -CFB]. The file consists of the
following storages and streams.

211 WordDocument Stre am

The WordDocument stream MUST be present in the file and MUST have an FIB at offset 0. It also
contains the document text and other information referenced from other parts of the file. The stream

has no predefined structure other than the FIB at the beginning.

In the context of Word Binary Files, the delay stream that is refe renced in [MS-ODRAW] is the

WordDocument stream.

The WordDocument stream MUST NOT be larger than Ox7FFFFFFF bytes.

2.1.2 1Table Stream or OTable Stream

Either the 1Table stream or the OTable stream MUST be present in the file. If the FIB at offset 0 in the
WordDocument stream has base.fW hichTbIStm setto 1, this stream is called 1Table. Otherwise, it is
called OTable.

If the document is encrypted as specified in section 2.2.6 , this stream MUST have an

EncryptionHeader at offset 0, as specified in section 2.2.6. If the document is not encrypted, this

stream has no predefined structure. Other than the possible EncryptionHeader , this stream contains
the data that is referenced from the FIB or from other parts of the file.

This docu mentation refers to this stream as the Table Stream .

If a file contains both a 1Table and a OTable stream, only the stream that is referenced by
base.fWhichTbIStm is used. The unreferenced stream MUST be ignored.

The Table Stream MUST NOT be larger than 0x 7FFFFFFF bytes.

2.1.3 Data Stream

The Data stream has no predefined structure. It contains data that is referenced from the FIB or from
other parts of the file. This stream need not be present if there are no references to it.
The Data stream MUST NOT be larger than Ox7FFFFFFF bytes.
2.1.4 ObjectPool Storage
The Object Pool storage contains storages for embedded OLE objects . This storage need not be
present if there are no embedded OLE objects in the document.
2.1.41 Objinfo Stream
Each storage withinthe ~ ObjectPool storage _ contains a stream whose name is " \ 0030hjInfo" where
\ 003 is the character with value 0x0003, not the string lite ral " \003". This stream contains an ODT
structure which specifies information about that embedded OLE object
28 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

%5bMS-CFB%5d.pdf#Section_53989ce47b054f8d829bd08d6148375b
%5bMS-ODRAW%5d.pdf#Section_8560795e77594745838ff7f2ef2f1872

2.1.4.2 Print Stream

Each storage within the ObjectPool storage optionally contains a stream whose name is " \0O3PRINT"
where \003 is the character with value 0x0003, not the string literal " \003". This stream contains an
MFPF followed immediately by a Metafile as specified in MS -WMF]. If no PRINT or EPRINT stream is
present, then the object does not have a print presentation distinct from it S screen presentation.

2.1.4.3 EPrint Stream

Each storage within the ObjectPool storage optionally contains a stream whose name is " \0OO3EPRINT"
where \003 is the character with value 0x0003, not the string literal " \003". <1> This stream contains

an Enhanced Metafile, as specified in MS -EMF], to be used when printing the object. If no EPRINT or
PRINT stream _is present, then the object does not have a print presentation distinct from its screen
presentation.

2.15 Custom XML Data Storage
The Custom XML Data storage is an optional storage whose nhame MUST be "MsoDataStore".

The contents of the storage are specified in MS - OSHARED] section 2.3.6.

21.6 Summary Information Stream

The Summary Information stream is an optional stream whose name MUST be

"\ 005Summarylnformation”, where \ 005 is the character with value 0x0005, and not the string literal
"\005".

The contents of this stream are specified in MS-OSHARED] section 2.3.3.2.1.

2.1.7 Document Summary Information Stream

The Document Summary Information stream is an optional stream whose name MUST be

"\ 005DocumentSummarylnformation”, where \ 005 is the character with value 0x0005, not the string
literal " \005".
The contents of this stream are specified in MS - OSHARED] section 2.3.3.2.2.

2.1.8 Encryption Stream

The Encryption stream is an optional stream whose name MUST be "encryption”. The format of this
stream is specified in section 2.2.6.3 . This stream MUST NOT be present unless both of the following
conditions are met:

A The document is encrypted with Office Binary Document RC4 CryptoAP| Encryption (section
2.2.6.3).
A The fDocProps value is setinthe EncryptionHeader .Flags .

2.1.9 Macros Storage

The Macros storage is an optional storage that contains the macros for the file. If present, it MUST be
a Project Root Storage as defined in MS -OVBA] section 2.2.1.

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

29 / 576

%5bMS-WMF%5d.pdf#Section_4813e7fd52d04f42965f228c8b7488d2
%5bMS-EMF%5d.pdf#Section_91c257d7c39d4a369b1f63e3f73d30ca
%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d
%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d
%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d
%5bMS-OVBA%5d.pdf#Section_575462babf6741909facc275523c75fc

2.1.10 XML Signatures Storage

The XML signatures storage is an optional storage whose name MUST be "_xmlsignatures". This
storage contains digital signatures as specified in [MS -OFFCRYPTOQ] section 2.5.2.4. This storage
MAY<2> be ignored.

2.1.11 Signatures Stream

The signatures stream is an optional stream whose name MUST be "_signatures”. This stream
contains digital signatures as specified in [MS - OFFCRYPTO] section 2.5.1. This stream MAY <3> be
ignored.

2.1.12 Information Rights Management Data Space Storage

The Information Rights Management Data Space storage is an optional storage whose hame MUST be
"\006DataSpaces", where \ 006 is the character with value 0x0006, and not the string literal " \006".
This storage is specified in [MS - OFFCRYPTO)] section 2.2.

If this storage is present, the Protected Content Stream MUST also be present.

If this storage is present, all speci fied streams and storages other than this storage and the Protected
Content Stream SHOULD <4> be read from the Protected Content Stream as specified in [MS -
OFFCRYPTO] section 1.3.2 andifany o f those streams and storages exist outside of the Protected
Content Stream, they SHOULD <5> be ignored.

2.1.13 Protected Content Stream

The Protected Content Stream is an optional stream whose name MUST be " \009DRMContent", where
\ 009 is the character with value 0x0009, and not the string literal " \009". This storag e is specified in
[MS -OFFCRYPTO] section 2.2.10.

If this stream is present, the Information Rights Management Da ta Space Storage MUST also be
present.

2.2 Fundamental Concepts

2.2.1 Character Position (CP)

A character position, which is also known as a CP, is an unsigne d 32 -bit integer that serves as the
zero -based index of a character in the document text. There is no requirement that the text at

consecutive character positions be at adjacent locations in the file. The size of each character in the

file also varies. The location and size of each character in the file can be computed using the algorithm
in section 2.4.1 (Retrieving Text).

Characters include the text of the document, anchors for objects such as footnotes or textboxes, and
control characters such as paragraph marks and table cell marks.

Unless otherwise specified by a particular usage, a CP MUST be greater than or equal to zero and less
than Ox7FFFFFFF. The range of valid character positions in a particular document is given by the
algorithm in section 2.4.1 (Retrieving Text).

222 PLC

The PLC structure is an array of characte r positions followed by an array of data elements. The data
elements forany PLC MUST be the same size of zero or more bytes. The number of CPs MUST be one
more than the number of data elements. The CPs MUST appear in ascending order. There are different

30 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083
%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083
%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083
%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083

types of PLC structures, as specified in section 2.8 . Each type specifies whether duplicate CPs are
allowed for that type.

If the total size of a PLC (cbPlIc) and the size of a single data element (cbData) are known, the
number of data elements in that PLC (n) is given by the following expression:
chPlc — 4

" =1+ chData

The preceding expression MUST vyield a whole number for n.

0(1(2|3|4|5|6|7(8|9|0(1|2|3|4|5[6|7|8|9|0]|1|2|3|4[|5|6(|7|8|9|0]1

aCP (variable)

aData (variable)

aCP (variable length): An array of CP elements. Each type of PLC structure specifies the meaning of
the CP elements and the allowed range.

aData (variable length): Each type of PLC structure specifies the structure and meaning of the data
elements, any restrictions on the number of data elements, and any restrictions on the data
contained therein. It also specifies the relationship between the data elements and the
corresponding CPs

2.2.3 Valid Selection

Many constructs in file types described by this document refer to ranges of CPs. When such ranges
specify that they are restricted to a valid selection, the following rules apply.

A If the range contains content from more than one table cell at a particular table depth, then it
MUST contain only whole table rows at that table depth. For furth er specification, see Overview of
Tables (section 2.4.3).

A Ifthe range contains a field begin character, field separator character, or field end character, then
it MUST contain the entire field. F or further specification, see Plcfld (section 2.8.25).

A Both ends of the range MUST be in the same document part .

A Ifthe range is in the footnote document __, then both ends MUST be in the same footnote. For

further specification, see PlcffndTxt (section 2.8.20).

A Iftherange isinthe header document ,then both ends MUST be in the same header or footer. For
further specification, see Plcfhdd (section 2.8.22)

A Ifthe range is in the comment document __, both ends MUST be in the same comment. For further
specification, see PlcfandTxt (section 2.8 .8).

A Ifthe range is in the endnote document _, then both ends MUST be in the same end note. For
further specification, see PlcfendTxt (se ction 2.8.17).

31/ 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

A Iftherange is in the textbox document _, then both ends MUST be in the same textbox. For further
specification, see Plcft xbxTxt (section 2.8.32).

A Ifthe rangeisin the header textbox document _, then both ends MUST be in the same textbox. For
further specification, see PlcfHdrtxbxTxt (section 2.8.23).

224 STTB
The STTB is a string table that is made up of a header that is followed by an array of el ements. The
cData value specifies the number of elements that are contained in the array.
1 2 3
0|1|2(3|4|5|6|7|8|9|0|1|2|3|4|5(6|7|8(9|0|1(2|3|4|5[|6|7|8[9|0]|1
fExtend (variable) cData (variable)
cbExtra cchData o (variable)
Data o (variable) ExtraData o (variable)
cchData 1 (variable) Data 1 (variable)
ExtraData 1 (variable) é
cchData cpata-1 (variable) Data coata-1 (variable)
ExtraData cpaa-1 (variable)

The header consists of the following.

fExtend (variable): If the first two bytes of the STTB are equal to OxFFFF, thisisa2 -byte fExtend
field that specifies, by its existence, that the Data fieldsinthis STTB contain extended (2 -byte)
characters and that the cchData fields are 2 bytes in size. If the first two bytes of the STTB are

not equal to OxFFFF, this fExtend field does not exist, which specifies, by its nonexistence, that
the Data fieldsinthis STTB contain nonextended (1 -byte) characters and that the cchData fields
are 1 byte in size.

cData (variable): A 2 -byte unsigned integer or a 4 -byte signed integer that specifies the count of
elementsinthis STTB.Ifthisisa2 -byte unsigned integer, it MUST be less than OxFFFF. If this is
a 4 -byte signed integer, it MUST be greater than zero. Unless otherwise specified, this is a 2 -byte
unsign ed integer.

cbExtra (2 bytes): An unsigned integer that specifies the size, in bytes, of the ExtraData fields in
this STTB .

The array of elements consists of the following.

cchData (variable): An unsigned integer that specifies the count of characters in t he Data field
following this field. If this STTB is using extended characters as defined by fExtend , the size of
cchData is 2 bytes. Ifthis ~ STTB is not using extended characters, the size of cchData is 1 byte.

Data (variable): The definition of each STTB specifies the meaning of this field. If this STTB uses
extended characters, the size of this field is 2x cchData bytesanditisa Unicode string unless
otherwise specified by the STTB definitio n. If this STTB does not use extended characters, then

32 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

the size of this field is cchData bytes and it is an ANSI string, unless otherwise specified by the
STTB definition.

ExtraData (variable): The definition of each STTB specifies the structure and meanin g of this field.
The size of this field is cbExtra bytes.

2.25 Property Storage

Files in Word Binary File Format store the properties of characters, paragraphs, tables, pictures, and

sections as lists of differences from the default. A Prl_ specifies each difference . It consists of a Single
Property Modifier (Sprm) and its operand. An application can determine the final set of properties by
applying lists of Prl s in the order that is specified in section 2.4.6 (Applying Properties).

An application SHOULD <6> skipany Prl that corresponds to a property or feature not present in the
applica tion by using Sprm.spra to determine the size of the Prl to skip.

The definition of each ~ Sprm in section 2.6 specifies the default value for the corresponding property.

If multiple Prl s modify the same property, the last one that is applied determines the final value of
that property unless otherwise specified in a Sprm definition in section 2.6.

Any restrictions on the ordering of Prl s are included in the specifications of the individual Sprm s
inv olved in the restriction. See sprmTDelete as an example.

In cases where multiple Sprm s modify the same property, but are supported by different application
versions, an application generating a file MUST first emit the Sprm that has the lower ispmd
followed by the Sprm that has the higher ispmd . For example, sprmPBrcTop80 and sprmPBrcTop
both modify the top border of a paragraph, but spormPBrcTop can express more colors. If an

application emits only sprmPBrcTop, applications that support only sprmPBrcTop80 do not display a

top bord er.

2251 Sprm

The Sprm structure specifies a modification to a property of a character, paragraph, table, or section.

0123456789(1)123456789(2)12345678931
ispmd A sgc spra
ispmd (9 bits): An unsigned integer that, when combined with fSpec , specifies the property being
modified. See the tables in the Single Property Modifiers _ section (2.6) for the complete list of valid

ispmd , fSpec , spra combinations for each sgc .

A - fSpec (1 bit): When combined with ~ ispmd , specifies the property being modified. See the tables
in the Single Property Modifiers section (2.6) for the complete list of valid ispmd , fSpec , spra
combinations for each sgc .

sgc (3 bits): An unsigned integer that specifies the kind of document content to which this Sprm
applies. The following table specifies the valid values and their meanings.

33/ 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Sgc | Meaning

Sprm is modifying a paragraph property.

Sprm is modifying a character property.

Sprm is modifying a picture property.

Sprm is modifying a section property.

G| [W|N|(F

Sprm is modifying a table property.

spra (3 bits): An unsigned integer that specifies the size of the operand of this Sprm . The following
table specifies the valid values and their meanings.

Spra Meaning

Operand is a ToggleOperand (whichis 1 b yte in size).

Operand is 1 byte.

Operand is 2 bytes.

Operand is 4 bytes.

Operand is 2 bytes.

Operand is 2 bytes.

oW |IN|(F|O

Operand is of variable length. The first byte of the operand indicates the size of the rest of the
operand, except in the cases of sprmTDefTable and sprmPChgTabs .

7 Operand is 3 bytes.

2252 Pr

The Prl structureisa Sprm thatis followed by ano perand. The Sprm specifies a property to modify,
and the operand specifies the new value.

sprm operand (variable)

sprm (2 bytes): A Sprm which specifies the property to be modified.

operand (variable): A variable -length operand for the sprm . The size of the operand is specified by
sprm.spra . The meaning of the operand depends on the sprm , see section 2.6 (Single Property
Modifiers).

2.2.6 Encryption and Obfuscation (Password to Open)

A file in Word Binary File Format can be password protected by using one of the following
mechanisms:

A XOR obf uscation (section 2.2.6.1)
A Office binary document RC4 encryption (section 2.2.6.2)
A Office binary document RC4 CryptoAPI encryption <7> (section 2.2.6.3)

If EibBase .fEncrypted and FibBase.fObfuscated are both 1, the file is obfuscated by using XOR
obfuscation (section 2.2.6.1) as specified in section 2.2.6.1.

34 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

If FibBase.fEncrypted is1and FibBase.fObfuscated is 0, the file is encrypted by using either

Office Binary Document RC4 Encryption (section 2. 2.6.2) or Office Binary Document RC4 CryptoAPI
Encryption (section 2.2.6.3), with the EncryptionHeader stored in the first ~ FibBase.lKey bytes of
the Table stream . The EncryptionHeader.EncryptionVe rsioninfo specifies which encryption

mechanism was used to encrypt the file.

See Security Considerations for information about security concerns relating to file obfuscation and
encryption for thi s file format.

2.26.1 XOR Obfuscation

In a file that is password protected by using XOR obfuscation, FibBase .fE ncrypted and
FibBase.fObfuscated MUST both be 1.

The password verifier computed from the password as specified in Binary Document Password Verifier
Derivation Method 2 in [MS - OFFCRYPTO] section 2.3.7.4 MUST be stored in FibBase. IKey .

The WordDocument stream , the Table stream , and the Data stream MUST be obfuscated using XOR
Data Transformation Method 2 as specified in [MS -OFFCRYPTO] section 2.3.7.6. All other streams and
storages MUST NOT be obfuscated.

The byte transformation specified in [MS -OFFCRYPTOQ] section 2.3.7.6 MUST be carried out in the
WordDocument stream relative to the beginning of the stream, but the initial 68 bytes MUST be
written out with their untransformed values.

2.2.6.2 Office Binary Document RC4 Encryption

In a file that is password protected by using Office binary document RC4 encryption as specified in
[MS -OFFCRYPTO] section 2.3.6, FibBase .fEncrypted MUST be 1 and FibBase.fObfuscated MUST be
0.

The EncryptionHeader , as specified in [MS -OFFCRYPTOQ] section 2.3.6.1, MUST be written in
unencrypted form in the first FibBase.lKey bytes ofthe Table stream . The remainder of the Table
stream, the WordDocument stream __ beyond the initial 68 bytes, and the entire Data stream _ MUST be
encrypted.

These three streams of data MUST be encrypted in 512 -byte blocks. The block number MUST be set to
zero at the beginning of the stream and MUST be incremented at each 512 -byte boundary. The
encryption algorithm MUST be carried out at the beginning of the Table stream and the

WordDocument stream even though some of the bytes are written in unencrypted form

All other streams and storages MUST NOT be encrypted.

2.2.6.3 Office Binary Document RC4 CryptoAPI Encryption

In a file that is password protected by using Office binary document RC4 CryptoAPI encryption as
specified in [MS -OFFCRYPTQ] section 2.3.5, FibBase .fEncrypted MUST be 1 and
FibBase.fObfuscated MUST be O.

The EncryptionHeader as specified in [MS -OFFCRYPTO] section 2.3.5.1 MUST be written in

unencrypted form in the first FibBase.lKey bytes of the Table stream . The remainder of the Table
stream, the WordDocument stream beyond the initial 68 bytes, and the entire Data stream MUST be
encrypted.

These three streams of data MUST be encrypted in 512 -byte blocks. The block number MUST be set to
zero at the beginning of the stream and MUST be incremented at each 512 byte boundary. The

encryption algorithm MUST be carried out at the beginning of the Table stream and the

WordDocument stream even though some of the bytes are written in unencrypted form.

35/ 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083
%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083
%5bMS-OFFCRYPTO%5d.pdf#Section_3c34d72a1a614b52a893196f9157f083

The ObjectPool storage MUST NOT be pre sent and if the file contains OLE objects , the storage

objects for the OLE objects MUST be stored in the Data stream as specified in sprmCPicl.ocation .
If fDocProps is setinthe EncryptionHeader .Flags , the Encryption stream MUST be present, the
Summary Information stream MUST NOT be present, and a placeholder Document Summary

Information stream MUST be present as specified in [MS -OFFCRYPTO] section 2.3.5.4.

If fDocProps is notsetinthe EncryptionHeader .Flags , the Document Summary Information stream
and the Summary Information stream MUST NOT be encrypted.

All other streams and storages MUST NOT be encrypted <8> .

2.3 Document Parts

The range of CPs in a document is separated into multiple logical parts. Many features operate wi thin
the individual parts and use CPs relative to the beginning of the part in which they operate rather than

relative to the beginning of the document. This section defines the document parts and specifies the

corresponding range of CPs.

All documents MUS T include a non -empty Main Document part. In addition, if any of the other

document parts are non -empty, the document MUST include one additional paragraph mark
character (Unicode 0x000D) beyond the end of the last non -empty document part. That character is
not displayed to or editable by the user, because it is outside of any document part.

2.3.1 Main Document

The main document contains all content outside any of the specialized document parts, including
anchors that specify where content from the other document parts appears.

The main document begins at CP zero, and is FibRgLw97 .ccpText characters long.

The last character in the main document MUST be a paragraph mark (Unicode 0x000D).

2.3.2 Footnotes

The footnote document contains all of the content in the footnotes. It begins at the CP immediately
foll owing the Main Document , andis FEibRgLw97 .ccpFtn characters long.

The locations of individual footnotes within the footnote document are specified by a PlcffndTxt whose
location is specified by the fcPlcffndTxt member of FibRgFclLcb97 . The locations of the footnote

referen ce characters in the Main Document are specified by a PlcfindRef _ whose location is specified

by the fcPlcffndRef = member of FibRgFcLcb97

2.3.3 Headers

The header document contains all content in headers and footers as well as the footnote and endnote

separators. It begins immediately after the footnote document and is Fib RgLw97 .ccpHdd characters
long.

The header document is split into text ranges called stories, as specified by PlcfHdd . Each story
specifies the contents of a single header, footer, or footnote/endn ote separator. If a story is non -
empty, it MUST end with a paragraph mark that serves as a guard between stories. This paragraph

mark is not considered part of the story contents (that is, if th e story contents require a paragraph

mark themselves, a second paragraph mark MUST be used).

Stories are considered empty if they have no contents and no guard paragraph mark. Thus, an empty
story is indicated by the beginning CP, as specified in PlcfHdd , being the same as the next CP in
PlcfHdd

36 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

If the header document exists, as indicated by FibRgLwW97.ccpHdd and FibRgFcLch97 .IcbPIlcfHdd
being nonzero, its first six stories specify footnote and endnote separators, in this order.

Story number Contents

0 Footnote separator

1 Footnote continuation separator

2 Footnote continuation notice

3 Endno te separator

4 Endnote continuation separator

5 Endnote continuation notice
The footnote and endnote separator stories do not nee d to contain whole paragraphs 0 thatis,
they do not necessarily need to have paragraph marks in their contents. However, they MUST
have the guard paragraph marks if they are non -empty.
Following the footnote and endnote separator stories are the stories tha t contain the contents of
headers and footers. Six such stories MUST exist for every section of the Main Document . The

first such grou p of stories specifies the contents of the headers and footers for the first section.
The second group specifies the contents of the headers and footers for the second section, and so
on. The stories within each group MUST appear in the following order.

St ory number in group Contents

0 Even page header. This MUST be non -empty if different even and odd
headers and footers are enabled for the section.

1 Odd page header. If different even and odd headers and footers are not
enabled for the section, the odd page header MUST be used on both even

and odd pages.

2 Even page footer. This MUST be non -empty if different even and odd
headers and footers are enabled for the section.

3 Odd page footer. If different even and odd headers and footers are not
enabled for the section, the odd page footer MUST be used on both even
and odd pages.

4 First page header. This MUST be non -empty if different first page headers
and footers are enable d for the section.

5 First page footer. This MUST be non -empty if different first page headers
and footers are enabled for the section.

Non -empty header and footer stories MUST contain whole paragraphs and thus MUST end with a
paragraph mark . Therefore, non -empty header and footer stories MUST have two paragraph marks at
their ends, one as part of the content followed by a separate guard paragraph mark.

An empty header or footer story specifies that the header or footer of the corresponding t ype of the
previous section is used. For the first section, an empty header or footer story specifies that it does
not have a header or footer of this type.

2.3.4 Comments

The commen t document contains all of the content in the comments. It begins at the CP immediately
following the Header Document andis FibRgLw97 .ccpAtn characters long.

37 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

The locations of individual comments within the comment document are specified by a PlcfandTxt
whose location is specified by the fcPIcfandTxt member of FibRgFclLch97 . The locations of the
comment reference characters in the Main Document _ are specifi ed by a PlcfandRef _ whose location is
specified by the fcPIcfandRef = member of FibRgFcLch97

2.3.5 Endnotes

The endnote docu ment contains all of the content in the endnotes. It begins at the CP that
immediately follows the Comment Document and is FibRgLw97 .ccpEdn characters long.

The locations of individual endnotes within the endnote document are specified by a PlcfendTxt whose
location is specified by the fcPlcfendTxt member of FibRgFclLch97 . The locations of the endnote
reference characters in the Main D ocument are specified by a PlcfendRef whose location is specified by
the fcPlcfendRef = member of FibRgFcLcb97

2.3.6 Textboxes

The textbox document contains all of the content in the textboxes whose anchors are in the Main
Document . It begins atthe ~ CP imm ediately following the Endnote Document _ and is
FIbRgLw97 .ccpTxbx characters long.

The locations of individual textboxes within the textb ox document are specified by a PlcftxbxTxt whose
location is specified by the fcPlcftxbxTxt member of the FibRgFclLcb97 . The locations of the textbox
anchors in the Main Document are specified by a plcfSpa __ whose location is specified by the

fcPlcSpaMom member of the FibR gFcLch97

Not all members ofa plcfSpa specify the location of a textbox. The lid member ofthe FTXBXS
structure specifies the relationship between shape anchors and textbox anchors.

2.3.7 Header Textboxes

The header textbox document contains all of the content in the textboxes whose anchors are in the
Header Document . It begins atthe CP immediately following the Textbox Document _ and is
FibRgLw97 .ccpHdrTxbx characters long.

The locations of individual textboxes within the header textbox document are specified by a

PlcfHdrtxbxTxt whose location is specified by the fcPIcfHdrtxbxTxt member of the FibRgFcLcbh97 .
The locations of the textbox anchors in the Header Document are specifi ed by a plcfSpa whose
location is specified by the fcPlcSpaHdr member of the FibRgFcLcb97

Not all members ofa plcfSpa specify the location of a textbox. The lid member ofthe FETXBXS
structure specifies the relationship between shape anchors and textbox anchors.

2.4 Document Content

This s ection specifies algorithms that are used to analyze document content and determine its

properties. These algorithms take CPs as input and return some piece of information about the
document conte nt at that location. For example, the algorithm in section 2.4.1 returns the text at that
CP.

Collectively, these algorithms specify relationships among data structures in the file types that are
specified in this documentation. These relationships MUST be maintained. These algorithms are not
examples, but definitions of how to interpret these data structures.

These algorithms can derive significant performance benefits from common programming prac tices
such as caching the results from previous input.

38 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

24.1 Retrieving Text

The following algorithm specifies how to find the text at a particular character position __ (cp). Negative
character positions are not valid.

1. Readthe FEIB_ from offset zero in the WordDocument Stream

2. Allversions ofthe FIB contain exactly one EibRgFcLch97 , though it can be nested in a larger
structure. FibRgFcLcb97.fcClx specifies the offset in the Table Stream ofa Clx.
FibRgFcLch97.1cbClx specifies the size, in bytes, of that Clx . Read the CIx from the Table
Stream.

3. The CIx containsa Pcdt ,andthe Pcdt containsa PlcPcd . Find the largest i such that
PlcPcd.aCp[i] O cp.Aswithall Plcs, the elements of PlcPcd.aCp are sorted in ascending order.
Recall from the definition of a Plc thatthe aCp array has one more element than the aPcd array.
Thus, if the last element of PlcPcd.aCp s less than or equal to cp, cp is outside the range of valid
character positions in this document.

4. PlcPcd.aPcd[] isa Pcd. Pcd.fc isan EcCompressed that specifiest he location in the
WordDocument Stream of the text at character position PlcPcd.aCp[1].

5. If FcCompressed.fCompressed is zero, the character at position cp isa 16 -bit Unicode
character at offset ~ FcCompressed.fc +2(cp - PlcPcd .aCp[i]) in the WordDocument Stream.
This is to say that the text at character position PlcPcd.aCP[i] begins at offset
FcCompressed.fc in the WordDocument Stream and each character occupies two bytes.

6. If FcCompressed.fCompre ssed is 1, the character at position cp is an 8 -bit ANSI character at
offset (FcCompressed.fc /2)+(cp - PlcPcd .aCp[i]) in the WordDocument Stream, unless it is
one of the special values in the table defined in the description of FcCompressed.fc . Thisis to
say that the text at character position PlcPcd.aCP[i] begins at offset FcCompressed.fc /2in
the WordDocument Stream and each character occupies one byte.

2.4.2 Determining Paragraph Boundaries

This section specifies how to find the beginning and end character positions _ of the paragraph that
contains a given character position. The character at the end character position of a paragraph MUST

be a paragraph mark ,an end -of-section character, acell mark,ora TT P mark (See Overview of
Tables). Negative character positions are not valid.

To find the character position of the first character in the paragraph that contains a given character
position cp:

1. Follow the algorithm from Retrieving Text _ up to and including step 3 to find i. Also remember the
FibRgFcLch97 and PlcPcd found in step 1 of Retrieving Text. If the algorithm from Retrieving
Text specifies that cp is invalid, leave the algorithm.

2. Let pcd be PlcPcd.aPcd[i].

3. Let fcPcd be Pcd .fc.fc. Let fc be fcPecd +2(cp T PlcPcd.aCp[i]). If Pcd.fc.fCompressed is one,
set fc to fc /2,and set fcPcd to fcPcd /2.

4. Reada PlcBtePapx at offset FibRgFcLch97 .fcPlcfBtePapx in the Table Stream , and of size
FibRgFcLch97 .IcbPIcfBtePapx . Let fcLast be the last element of plcbtePapx.aFc . If fcLast is
less than or equal to fc, examine fcPcd .If fcLast islessthan fcPcd , go to step 8. Otherwise, set
fc to fcLast . If Pcd.fc.fCompressed isone, set fcLast to fcLast /2.Set fcFirst to fcLast and
go to step 7.

5. Find the largest | suchthat plcbtePapx.aFc[j] O fc. Read a PapxFkp _at offset
aPnBtePapx][jl.pn *512inthe WordDocument Stream

39 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

6. Findthe largest k suchthat PapxFkp.rgfc] k] O fc. If the last element of PapxFkp.rgfc is less
than orequalto fc, then cp is outside the range of character positions in this document, and is
not valid. Let fcFirst be PapxFkp.rgfc[K].

7. If fcFirst is greaterthan fcPcd ,thenlet dfc be (fcFirst 1 fcPcd) .If Pcd .fc.fCompressed is
zero, then set dfc to dfc /2. The first character of the paragraph is at character position
PlcPcd.aCp[i]+dfc . Leave the algorithm.

8. If PlcPcd.aCp[] is 0, then the first character of the paragraph is at character position 0. Leave
the algorithm.

9. Set cp to PlcPcd.aCp[i].Set itoi- 1.Go to step 2.

To find the character position of the last character in the paragraph that contains a given character
position cp:

1. Follow the algorithm from Retrieving Text up to and including step 3 to find i. Also remember the
FibRgFcLcb97 ,and PlcPcd found in step 1 of Retrieving Text. If the algorithm from Retrieving
Text specifies that cp is invalid, leave the algorithm.

2. Let pcd be PlcPcd.aPcd] 1i].

3. Let fcPcd be Pcd.fc.fc .Let fc be fcPcd +2(cp T PlcPcd.aCp[1i]). Let fcMac be fcPcd +

2(PlcPcd.aCp [i+1] - PlcPcd.aCp[1i]).If Pcd.fc.fCompressed isone, set fc to fc/2,set fcPcd to

fcPcd /2 and set fcMac to fcMac /2.

4. Reada PIcBtePapx atoffset FibRgFcLch97 .fcPlcfBtePapx in the Table Stream, and of size

FibRgFcLch97 .IcbPIcfBtePapx . Then find the largest j suchthat plcbtePapx.aFc [j] fo. Ifthe

last element of plcbtePapx.aFc is less than orequal to fc, then go to step 7. Read a PapxFkp at

offset aPnBtePapx [j].pn *512 in the WordDocument Stream.

5. Find largest k suchthat PapxFkp.rgfc] k] O fc. Ifthe last elementof PapxFkp.rgfc is less than
orequalto fc,then cp is outside the range of character positions in this document, and is not
valid. Let fcLim be PapxFkp.rgfc] k+11].

6. |If fcLim O fcMac ,thenlet dfc be (fcLim 1 fcPcd) . If Pcd .fc.fCompressed s zero,t henset dfc
to dfc /2. The last character of the paragraph is at character position PlcPcd.aCp[i]+dfc 1 1.
Leave the algorithm.

7. Set cp to PlcPcd.aCp[i+1].Set ito i+ 1. Go to step 2.

2.4.3 Overview of Tables

A table cell consists of one or more paragraphs at the same nonzero table depth and, optionally, one

or more tables whose table depth is one greater than that of the containing cell. The last paragraph in
atable cellis terminated by a cell mark. If the table depth is 1, the cell mark MUST be character

Unicode 0x0007. If the table depth is greater than 1, the cell mark MUST be a paragraph mark
(Unicode 0x000D) with sprmPFInnerTableCell applied with a value of 1.

A table row has between 1 and 63 table cells, each at the same table depth, followed by a Table
Terminating Paragraph mark (TTP mark, also called a row mark), also at the same table depth. If the
table depth is 1, then the TTP mark MUST be a character Unicode 0x0007 with sprmPFTtp applied with
avalue of 1 . If the table depth is greater than 1, then the TTP mark MUST be a paragraph mark
(Unicode 0x000D) with sprmPFInnerTtp applied with a value of 1.

The table depth of a paragraph, table cell, or table row, is derived from the values of sprmPFInTable,
sprmPI tap, and sprmPDtap applied as direct paragraph properties to the paragraph mark, cell mark,

or TTP mark. See section 2.4.6.1 , Direct Paragraph Formatting for further specifications. Paragraphs
tha t are not in a table have a table depth of zero.

40 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

The following [ABNF] rulelist defines a table at depth N (TableN) in terms of paragraphs at depth N
(ParaN), cell marks at depth N (CellMarkN), TTP marks at depth N (TTPN), and tables at depth N+1
(TableN1). ABNF is specified in [RFC4234] .

CellM = *(TableN1 f ParaN) CellMarkN
Row N = 1*63CellN TTPN
TableN = 1*RowN

Two adjacent table rows of the same table depth are considered part of the same table unless they
differ in one of the following properties:

A Theoperandto sprmTlpap

A The table style, as specified by sprmTlIstd

A The table directionality as specified by section sprmTFBidi or section sprmTFBidi90

A The table position and wrapping as specified by sprmTPc, sp rmTFNoAllowOverlap, sprmTDxaAbs,

sprmTDyaAbs, sprmTDxaFromText, sprmTDyafromText, sprmTDxaFromTextRight, and
sprmTDyaFromTextBottom

If neither table row specifies nondefault values for the preceding table position and wrapping

properties, then two adjacent table rows of the same table depth are considered different tables if the

first paragraphs of the first cells of the rows differ in any of the paragraph frame properties specified

by sprmPPc, spormPDxaAbs, sprmPDyaAbs, sprmPDxaWidth, sprmPWHeightAbs, sprmP Dcs, sprmPWr,
sprmPDxaFromText, sprmPDyaFromText, spormPFLocked, sprmPFNoAllowOverlap, and

sprmPFrameTextFlow.

In addition, two table rows are considered part of different tables if a range -level protection
bookmark is present whose type, as specified by the sdtt member of the corresponding SDTI, is
sdttPara and that bookmark (1) contains content from more than one table cell but does not contain

the entirety of both rows.

The properties of each row mark MUST define the cells for that table row. SprmTDefTable and
sprmTInsert are used to create cell definitions, and sprmTDelete is used to remove them. The number

of cell definitions applied to the row mark MUST be equal to the number of cells in the row. There is no
requirement that each row of a table have the same number of cells.

An application SHOULD <9> use sprmTDefTable tod efine table cells for applications that do not
process sprmPTableProps, and at the same time use sprmTInsert for applications that do process
sprmPTableProps.

The following diagram shows several elements of a table and gives examples of Sprm_s that can be
used to modify each. The table in this example includes spacing between cells to demonstrate borders
and shading. It includes a nested table to demonstrate table depth.

41 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

https://go.microsoft.com/fwlink/?LinkId=90462

Logical Left table border

Logical Left cell border

Space between cells

(sprmTDefTableShdRaw)

(sprmTSetShdTable)

(sprmTTableBorders) (sprmTSetBrc) (sprmTcCellSpacingDefault)
ak — /
ZD(‘\
Paragraph at depth 1, Paragraph at depth 1] TTP mark
terminated by a cell mark X{ (depth 1)
Paragraph at jo H‘
depth 2,
terminated \
TTP mark
by a cell mark XX (depth 2)
Red cell 11\ X
shadingX{ -
T cell mark
Paragraph at depth 1 (depth 2)
ot
\Q\
Paragraph at depth1}Y{ H‘___\ Paragraph mark
II (depth 1)
This row has only one cellf
—
e Cell mark
Green cell shadingX{ / 0.2" top Cell Margin XX (depth 1)
Cell Shading Table Shading Cell Margin

(sprmTCellPadding)

Figure 1: A sample table

To determine which borders are displayed, see the following sections from

Section 2.4.63 tcBorders (Table Cell Bord ers)

A
A Section 2.4.37 tblBorders (Table Border Exceptions)
A

Section 2.4.38 tbIBorders (Table Borders)

ECMA-376] Part 4:

Cells can be vertically merged to create the appearance of a single cell spanning multiple rows. The

cell mark characters for the merged cells MUST still app

ear in the file. The second and subsequent

cells in the merged group MUST NOT contain any content other than their cell marks. The following
diagram shows a table with vertically merged cells. It uses inside borders to demonstrate that the

vertically merge d cells act as one cell.

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation

Release: November 16, 2021

42 | 576

https://go.microsoft.com/fwlink/?LinkId=200054

Cell Mark
(column 2, row 1)

Inside Horizontal Border
(sprmTTableBorders)

Vertically Merged Cells — \
(sprmTVertMerge) This is the content of This is row 1 * X

row 1, colum_n 1. Row This is row 2 ol
2, column 1 is not

displayed.
Cell Mark P
(column 1, row 3) X This is row 3X{ X

Cell Mark Inside Vertical Border Cell Mark
(column 1, row 1) (sprmTTableBorders) (column 2, row 2)

Figure 2: A table with vertically merged cells

244 Determining Cell Boundaries

This section describes an algorithm to find the boundaries of the innermost table cell containing a

given character position or to determine that the given character positio nis not in a table cell. Every
valid character position in a document belongs to a paragraph, so table depth can be computed for

each paragraph. If a paragraph is found to be at depth zero, that paragraph is not in a table cell.

Given character position cp, use the following algorithm to determine if cp isin atable cell.

1. Follow the procedure from Direct Paragraph Formatting to find the paragraph properties for the
paragraph that contains cp . Ap ply the properties, and determine the table depth as specified in
Overview of Tables . Call this itapOrig

2. If itapOrig is 0, then this paragraph is not in a table cell, so the following algorithms do not apply.
Leave this algorithm. Otherwise, cp isin atable.

3. Ifthe character at character position cp is nota TTP mark as specified in Overview of Tables, then
leave this algorithm.

4. If itapOrig is1,thenthe cp isnotin atable cell. Leave this al gorithm. Otherwise this TTP mark is
in a cell itself, to determine the boundaries of the containing cell set itapOrig to itapOrig 1 1in

the following algorithms.

Given a character position cp known to be at table depth itapOrig , follow this procedure to determine
the character position of the last character in the innermost table cell that contains cp.

1. Set itap to itapOrig

2. Determine the character position of the last character in the paragraph that contains cp, as
specified in Determining Paragraph Boundaries . Let this position be called cpLast .

3. Follow the procedure from Direct Paragraph Formatting to find the paragraph properties for the
paragraph that contains cpLas t. Apply the properties, and determine the table depth as specified
in Overview of Tables. Call this itap' . Itisinvalid for itap' tobelessthan itap .If itap' isless than
itap , leave the algorithm.

4. |If itap' isequalto itap , determine the text at cha racter position cplLast , as specified in Retrieving
Text . If this character is a cell mark, as specified in Overview of Tables, then cplLast is the desired
output. Leave the algorithm.

5. Let cp be cplast +1,and go to step 2.

Given a character position cp that is known to be at table depth itapOrig, follow this procedure to
determine the character position of the first character in the innermost table cell that contains cp.

1. Set itap to itapOrig

43 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

2. Determine the character position of the first character in the paragraph that contains cp,as
specified in Determining Paragraph Boundaries. Let this character position be called cpFirst

3. If cpFirst is zero, then this is the desired output. Leave the algori thm. Negative values for cpFirst

are invalid. If cpFirst is negative, leave the algorithm.
4. Let cpPrev be cpFirst 1 1. Follow the procedure from Direct Paragraph Formatting to find the

paragraph properties for the paragraph that contains cpPrev . Apply the properties, and determine
the table depth as specified in Overview of Tables. Call this itapPrev

5. |If itapPrev islessthan itap ,then cpFirst is the desired output. Leave the algorithm.

6. If itapPrev isequalto itap , determine the text at character position cpPrev , as specified in
Retrieving Text. If this character is a cell mark or a TTP mark, then cpFirst s the desired output.

Leave the algorithm.
7. Set cp to cpPrev . Goto step 2.

2.45 Determining Row Boundaries

This section describes an algorithm to find the boundaries of the innermost table row containing a

given character position or to determine that the given character position is not in a table row. Every
valid character position in a document belongs to a paragraph, so table depth can be computed for

each paragraph. Ifapa ragraph is found to be at depth zero, then that paragraph is not in a table row.

This algorithm is the same as Determining Cell Boundaries except that only TTP marks cause a
termination, not cell marks.

Given character position cp, use the following algorithm to determine if cp isin atable.

1. Follow the procedure from Direct Paragraph Formatting to find the paragraph properties for the
paragraph that contains cp . Apply the properties and determine the table depth as specified in
Overview of Tables . Call this itap .

2. If itap is zero, then this paragraph is not in a table row. Leave the algorithm.

Given a character position cp known to be at table depth itap , which is greater than 0, follow this

procedure to determine the character position of the TTP mark of the row that contains cp.

1. Determine the character position of the last cha racter in the paragraph that contains cp, as
specified in Determining Paragraph Boundaries . Let this position be called cpLast .

2. Follow the procedure from Direct Paragraph Formatting to find the p aragraph properties for the
paragraph that contains cpLast . Apply the properties and determine the table depth as specified
in Overview of Tables. Call this itap' . Itisinvalid for itap' tobelessthan itap .If itap' islessthan
itap , leave the algorithm.

3. If itap' isequalto itap , determine the text at character position cpLast , as specified in Retrieving
Text . If this character is a TTP mark as specified in Overview of Tables, then cpLast is the desired

output. Leave the algorithm.
4. Let cp be cpLast +1andgotostep 1.

Given a character position cp known to be at table depth itap , which is greater than 0, follow this
procedure to determine the character position of th e first character in the innermost table row that
contains cp.

1. Determine the character position of the first character in the paragraph that contains cp as
specified in Determining Paragraph Boundaries. Let this character position be called cpFirst

2. If cpFirst is zero, then this is the desired output. Leave the algorithm. Negative values for cpFirst
are invalid. If cpFirst is negative leave the algorithm.

3. Let cpPrev be cpFirst 1 1. Follow the procedure from Direct Paragraph Formatting to find the
paragrap h properties for the paragraph that contains cpPrev . Apply the properties, and determine
the table depth as specified in Overview of Tables. Call this itapPrev

4. |If itapPrev islessthan itap ,then cpFirst isthe desired output. Leave the algorithm.

5. If itapPrev isequalto itap , determine the text at character position cpPrev , as specified in
Retrieving Text. If this character is a TTP mark as specified in Overview of Tables, then cpFirst

the desired output. Leave the algorithm.

44 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

6. Set cp to cpPrev .Goto stepl.

2.4.6 Applying Properties

This section specifies algorithms for determining the properties of text, paragraphs, lists, and tables.

The final two subsections (Determining Properties of a Style and Determining Formatting Properties)
specify the order in which the arrays of Prls are combined to compute the final property set. Recall

from section 2.2.5 (Property Storage) that it is valid for multiple Prls to modify the same property. In
this event, the last Prl applied determines the value of that property, unless otherwise specified in the

specification of a particular Sprm . Thus, an application MUS T process the arrays of Prls in the order
specified in section 2.4.6.6, Determining Formatting Properties, to arrive at the correct property set.

Recall also from section 2.2.5 (Property Storage) that a Prl MAY <10>_be ignored by applications that
do not support the features represented by the Prl.
2.4.6.1 Direct Paragraph Formatting

This section explains how to find the properties applied directly (as opposed to through a style, for
example) to apa ragraph, givena character position _ cp within it. The properties are found as an array
of Prl_ elements.

1. Follow the algorithm from Determining Paragraph Boundaries for finding the character position of
the last character in the paragraph to completion. From step 5, remember the PapxFkp and k.
From step 4, remember the offset in the WordDocument Stream __ at which PapxFkp was read. Let
this offset be called of . From step 2 remember the Pcd . If the algorithm from Determining
Paragraph Boundaries specifies that cp isinvalid, leave the algorithm.

2. Finda BxPap at PapxFkp .rgbx[k].Finda PapxinFkp atoffset of +2* BxPap.bOffset

3. Finda GrpprlAndlstd inthe PapxInFkp from step 2. The offset and size of the GrpprlAndistd
is in structed by the first byte of the PapxinFkp , as detailed at PapxInFkp

4. Find the grpprl withinthe GrpprlAndistd . Thisis an array of Prl elements that specifies the
direct properties of this paragraph.

5. Finally Pcd. Prm _ specifies further property modifications that apply to this paragraph. If Pcd .Prm
isa Prm0 andthe Sprm specifie d within Prm0 modifies a paragraph property, append to the
array of Prl elements from the previous step a single Prl made ofthe Sprm andvaluein PrmO .i
Pcd .Prm isa Prml , appendtothe arrayo f Prl elements from the previous step any Sprm
structures that modify paragraph properties within the array of Prl elements specified by Prml .

2.4.6.2 Direct Character Formatting

This section specifies how to find the properties applied directly to a given character position _ cp. The
result will be an array of Prl_elements that specify the property modifications to be applied.

Additional formatting and properties can affect that cp as well, if a style is applied. To determine the
full set of properties, including those from styles, see section 2.4.6.6 Determining Format ting
Properties.

1. Follow the algorithm from Retrieving Text . From step 5 or 6, determine the offset in the
WordDocument Stream __ where text was found. Call this offset fc . Also remember from step 4, the
Pcd. If the algorithm from Retrieving Text specifies cp isinvalid, leave the algorithm.

2. Reada PlcBteChpx at offset FibRgFcLcb97 .fcPlcfBteChpx inthe Table Stream , and of size
FibRgFcLch97. IcbPlcf BteChpx

45 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

3. Findthe largest i such that plcbteChpx .aFc[i] 9. If the last element of plcbteChpx .aFc isless
than orequalto fc, then cp is outside the range of character positions in this document, and is
not valid. Read a ChpxFkp at offset aPnBteChpx [i].pn *512 in the WordDocument Stream.

4. Findthe largest | suchthat ChpxFkp .rgfc[j] O fc. If the last element of ChpxFkp .rgfc is less than
orequalto fc,then cp is outside the range of character positions in this document, and is not
valid. Find a Chpx at offset ChpxFkp. rgb [i] in ChpxFkp.

5. The grpprl within the Chpx is an array of Prls that specifies the direct properties of this character.
6. Additionally, apply Pcd .Prm which specifies additional properties for this text. If Pcd.Prmis a PrmO
and the Sprm_ specified within Prm0 modifies a character property (a Sprm with an sgc value of

2), append a single Prl made of the Sprm and value in that Prm0 to the array of Prls from the
previ ous step. If Pcd.Prm is a Prm1 , append any Sprms that modify character properties from the
array of Prls specified by Prm1.

2.4.6.3 Determining List Formatting of a Paragraph

Alistinan MS -DOC file cons ists of one or more paragraphs. Each paragraph in a list has a nonzero

iLfo property (see sprmPllfo) and an iLvl property (see sprmPIivl), which are used to determine the
information that is neces sary to format the paragraph as a member in a specific list. Paragraphs that
share the same iLfo property, and exist in a range of text that constitutes a Valid Selection , are
considered to be par t of the same list. Paragraphs in a list do not need to be consecutive, and a list

can overlap with other lists. This section describes an algorithm to add list formatting to a paragraph
containing a given character position

Given character position cp, use the following three -part algorithm to add list formatting to the
paragraph containing cp.

Part 1
1. Follow the procedure for determining formatting properties, as specified in section 2.4.6.6 , to find
the paragraph properties for the paragraph that cp belongs to.

2. Let iLfoCur and iLvICur bethe iLfo (see sprmPllfo)and iLvl (see sprmPllvl) properties of the
paragraph, respectively. If iLfoCur is zero, the paragraph is not part of a list, and the algorithm
ends.

3. Let Ifo bethe LFO at PlfLfo.rgLfo [iLfoCur -1].Iftherei s no such LFO, the file is invalid and the
algorithm ends.

4. Let Istf bethe LSTF in PlfLst.rgLstf suchthat Istf .Isid equals Ifo .Isid . If there is no such LSTF,
the file is invalid and the algorithm ends.

5. Let Ifodata bethe LFOData at PIfLfo. rgLfoData [iLfoCur -1].

6. Let Ifolvl bethe LFOLVL in Ifodata .rgLfoLvl suchthat Ifolvl .iLvl equals iLvICur , if such an
LFOLVL exists. If there is no such LFOLVL, go to part 1 step 8.

7. If Ifolvl .fFormatting is nonzero, let vl be I[folvl.lvl and go to part 2 step 1.

8. Let i beO. Foreach LSTF in PIfLst. rgLstf priorto Istf ,if LSTF. fSimpleList iszero,let i=i+9,if
LSTF.fSimpleList is nonzero,let ibe i+ 1.

9. Letibei+ iLvICur.

46 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

10. Let Ivl bethe i™ LVL inthe array of LVL s appended to PIfLst (see the fcPIfLst field of
FibRgFcLch97).

Part 2
After the Istf and Ivl are determined, the next step is to determine the number text of the paragraph.

1. Let xstNumberText be a copy of Ivl.xst

2. If IvLIvif.nfc is not equal to 0x17, go to part 2 step 4. If Ivl.IvIf.nfc is equal to 0x17, the
paragraph is in a bulleted level.

3. Let xchBullet be the 16 -bitcharacter at xstNumberText .rgtchar [0]. If xchBullet & 0xFOO0O is
nonzero, let xstNumberText .rgtchar [0] equal xchBullet & OxOFFF. Go to part 3 step 1.

4. Foreachentry jin Ivl .IvIf .rgbxchNums such that Ivl .IvIf .rgbxchNums [j] is nonzero, let
iLviTemp be the 16 -bit integer stored at Ivl .xst.rgtchar [Ivl .Ivif .rgbxchNums [j] - 1]. If iLviTemp
== iLvICur , replace the iLviTemp placeholderin xstNumberText withthe level number of the
current paragraph. If iLviTemp < iLvICur , replace the iLviTemp placeholderin xstNumberText with

the lev el number of the closest previous paragraph in the list that has an iLvl property that equals
iLviTemp . If iLvITemp > iLvICur , the file is invalid and the algorithm ends. If Ivl.Ivif.fLegal is
nonzero, each of these level numbers MUST be reformatted as acc ording to the fLegal field

descriptionin LVLF before they replace their respective placeholders.

Part 3

After the number text of the paragraphs is determined, the final step is to format the par agraph and
the number text.

1. |If Istf .rgistdPara [iLvICur] != OXOFFF, apply the style specified by Istf .rgistdPara [iLvICur] to
both the paragraph and xstNumberText

2. Apply the character properties specified by Ivl .grppriChpx to xstNumberText

3. Append the charac ter specified by Ivl .Ivlf .ixchFollow to xstNumberText . xstNumberText is how
the number text that will be displayed at the beginning of the paragraph.

4. Apply the paragraph properties specified by Ivl .grppriPapx to the paragraph, including
xstNumberText
5. Justify only the xstNumberText according to the justification specified by vl . IvIf .jc .

The paragraph is now formatted as part of a list.

2.4.6.4 Determining Level Number of a Paragraph

The level number of a paragraph is the number in the number sequence of the le vel that corresponds
to that paragraph, formatted according to an MSONFC (as specified in MS - OSHARED] section
2.2.1.3). The number sequence of a level begins at a specified value and increments by 1 for each
paragraph in the level. Also, the number sequence of a level can restart when certain other levels are
encountered. See the specification of LVLF for more inform ation. This section describes an algorithm

to determine the level number of a paragraph containing a given character position

Given character position cp, use the following algorithm to determine the level number of the
paragraph containing cp:

47 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d

1. Follow steps 1 thru 10 of Determining List Formatting of a Paragraph to getthe iLfoCur, iLvICur ,

Ifolvl ,and Ivl that correspond to the paragraph that cp belongs to.
2. Let nfcCur be Ivl.ivif.nfc . If nfcCur is equal to OXFF or Ox17, this level has no number sequence,
and the level number of the paragraph is an empty string. In this case, let xsLevelNumber be an

empty string, and the algorithm ends.

3. If Ifolvl exists,and Ifolvl .fStartAt is nonzero and Ifolvl .fFormatting is zero, let iStartAt be
Ifolvl .iStartAt . Otherwise, let iStartAt be IvlIvlf.iStartAt

4, If IvlLIvlif.fNoRestart is nonzero, let iLvIRestartLim be Ivl.Ivif.iLvIRestartLim . Otherwise, let
iLvIRestartLim be iLvICur .

5. Let numCur be iStartAt .

6. Foreach paragraph p thathas an iLfo property thatis equal to iLfoCur and that is in the same
Valid Selection _as cp, beginning with the paragra ph starting at the lowest character position up to
but not including the paragraph containing cp:Ifthe iLvl property of the paragraph p is less than
iLviRestartLim , let numCur be iStartAt . Ifthe iLvl of the paragraph p equals iLvICur , let numCur
be numCur +1.

7. Let xsLevelNumber be a string containing the number specified by numCur formatted according to
the MSONFC (as specified in [MS -OSHARED] section 2.2.1.3) specified by nfcCur .

xsLevelNumber is now the level number of the paragraph.

2.4.6.5 Determining Proper ties of a Style

This section specifies an algorithm to determine the set of properties to apply to text, a paragraph, a

table, or a list when a particular style is applied to it. Given an istd , one or more arrays of Prl_can be
derived that express the differences from defaults for this style. Depending on its stk , a style can
specify properties for any combination of tables, paragraphs, and characters.

Given an istd :

1. Readthe FEIB_from offset zero in the WordDocument Stream

2. Allversions ofthe FIB contain exactly one FibRgFcLch97 though it can be nested in a larger
structure. Read a STSH from offset FibRgFcLch97.fcStshf inthe Table Stream _ with size
FibRgFcLcb97.lcbStshf

3. Thegiven istd isazero -basedindexinto STSH.rglpstd .Readan LPStd at STSH.rglpstd [istd].
4. Readthe STD structur e as LPStd .std , of length LPStd .cbStd bytes.

5. Fromthe STD.stdf .stdfBase obtain istdBase .If istdBase is any value other than OXOFFF, then
this style is based on another style. Recursively apply this algorithm using istdBase as the
starting istd to obtain o ne or more arrays of Prl s as the properties for tables, paragraphs and
characters from the base style.

6. Fromthe STD.stdf .stdfBase obtain stk . For more information, see the description of the cupx
member of StdfBase .Read an STD.grLPUpxSw . Based onthe stk , grLPUpxSw contains one of
the following structures: StkParaGRLPUPX , StkCharGRLPUPX , StkTableGRLPUPX , StkListGRLPUPX .

7. Each of the preceding structures contains one or more of the following: LPUpxPapx , LPUpxChpx ,
LPUpxTapx . Each of the latter structures leads to one or more arrays of Prl that specify properties.
48 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

For more information, see the sections documenting these structures for how to obtain these
arrays.

8. For each array obtained in step 7 that specifies properties of a table, paragraph, or characters,
append to the beginning o f the corresponding array from step 5, if any. The resulting arrays of Prl
are the desired output. Leave the algorithm.

2.4.6.6 Determining Formatting Properties

This section specifies an algorithm for how to combine properties from various sources that influence
the properties of a character position _ to obtain the final formatting.

Character, paragraph, and table properties of the text at any given character position are specified by

lists of differences from the defaults. Property Storage explains how to determine defaults and how to
apply property differences. This section further specifies which lists of property differences are

applicable and the order in which they apply.

In general, the differences from defaults are specified by one or more styles as well as any directly
applied property modifications. Multiple styles can influence the properties at a given character
position. A table style , for example, can specify paragraph properties that apply to some or all
paragraphs within that table. A paragraph in such a table can itself have a paragraph style, in which
case two different lists of differences modify the properties of said paragraph.

Given character position cp, use the following algorithm to determine the properties of text at cp:
Part 1:

1. Determine defaults for all properties the application is interested in. For further specification, see
Property Storage.

2. Split the properties into three groups based on the objects they apply to: paragraph properties,

character properties, and table properties as specified by Single Property Modifies . These are the
set of properties which w ill be modified throughout the algorithm to arrive at the desired
properties.

3. Allversions ofthe FEIB contain exactly one FibRgFcLcb97 though it can be nested in a larger

structure. Read an STSH_from offset FibRgFcLcb97.fcStshf inthe Table Stream , with size
FibRgFcLcb97 .IcbStshf . Fromthe STSH, obtainan LPStshi and from that obtain an STSHI .

4. Apply the property modifications specified by the ftcAsci , ft cFE and ftcOther members of the
STSHI. Stshif along with the ftcBi member of STSHI if specified.

5. Determine whether cp isin a table or not. For further specification, see Determining Cell
Boundaries . If cp is notin atable, go to step 1 of part 2.

6. Determine the table style that is applied to the innermost row that contains cp as follows:

1. Apply the algorithm from Determining Row Boundaries to obtain the character position of the
TTP mark of the innermost row that contains cp . Call this cpTtp .

2. Apply the algorithm from Direc t Paragraph Formatting on cpTtp .

3. Apply the array of Prl_elements that was obtained to the table row and determine the istd of
the table style applied to this table row using sprmTlstd . Callit istdTable . If no table style is

applied, go to step 1 of part 2.

7. Using the algorithm from Determining Properties of a Style ,Obtaina grppriPapx , grppriChpx
and a grppriTapx (if available) from the istdTable . Apply any property modifications specified in
grppriChpx , grppriPapx , and grppriTapx to the character, paragraph, and table properties,
respectively.

49 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

8. Find the position of the inner most cell that contains cp within the innermost table that contains cp
by applying the algorithm from Determining Row Boundaries and Determining Cell Boundaries as
appropriate. Specifically, determine if the innermost cell that contains cp belongs tothe f irstrow,
first column, last row, or last column of the innermost table that contains cp . Also, determine
whether the innermost cell that contains cp isin an even or an odd horizontal band based on
horizontal banding applied in grppriTapx with sprmTCHorzBands and, similarly, if it is in an even
or an odd vertical band based on vertical banding applied in grppriTapx with sprmTCVertBand = s.
Note that if spormTTIp. grfatl specifies that the top row of the table receives special formatting,
then the top row of the table and any row with spormTTableHeader applied with a value of 0x01 is
not counted when determining odd or even horizontal banding . Similarly, if spormTTIlp. grfatl
specifies that the logically leftmost column of the table receives special formatting, then that
column is not counted when determining odd or even vertical banding.

9. Next, using the array of Prls obtained in step 6, determin e if additional property differences need
to be appliedto cp based on its location in the table as specified by sprmTTIp. grfatl . If additional
property differences need to be applied, look for sprmPCnf s withinthe grppriPapx from step 7,
sprmCCnf s within grpprlChpx from step 7, and sprmTCnfs within grppriTapx from step 7 whose
CNFC, see CNFOperand .cnfc , matches the position information found in step 8. The following table
specifies which CNFC values match which position information.

CNFC

Value Mat ches é

0x0001 Any cell in the top row or with sprmTTableHeader applied with a value of 0x01 if sprmTTIp. grfatl
specifies that top row of the table receives special formatting.

0x0002 Any cell in the bottom row if spormTTIp. grfatl specifies that bottom row of the table receives
special formatting and the cell does not match CNFC value 0x0001.

0x0004 Any cell in the logically leftmost column if sprmTTIp. grfatl specifies that the logically leftmost
column receives special formatting.

0x0008 Any cell in the logically rightmost column if sprmTTIp. grfatl specifies that the logically rightmost
column receives special formatting and the cell does not match CNFC value 0x0004.

0x0010 Any cell in an odd numbered vertical band if sprmTTlIp. grfatl specifies that odd numbered
vertical bands receive special format ting and the cell does not match CNFC values 0x0004 or
0x0008.

0x0020 Any cell in an even numbered vertical band if spormTTIp. grfatl specifies that even numbered
vertical bands receive special formatting, and the cell does not match CNFC values 0x0004 or
0x0008.

0x0040 Any cell in an odd numbered horizontal band if spormTTlIp. grfatl specifies that odd numbered
horizontal bands receive special formatting, and the cell does not mat ch CNFC values 0x0001 or
0x0002.

0x0080 Any cell in an even numbered horizontal band if sprmTTIp. grfatl specifies that even numbered
horizontal bands receive special formatting, and the cell does not match CNFC values 0x0001 or
0x0002.

0x0100 The logical ly rightmost cell on the top row of the table if sprmTTIp. grfatl specifies that both the
top row and the logically rightmost column receive special formatting and the cell does not match
CNFC value 0x200.

0x0200 The logically leftmost cell on the top row of the table if sprmTTIp. grfatl specifies that both the
top row and the logically leftmost column receive special formatting.

0x0400 The logically rightmost cell on the bottom row of the table if sprmTTIp. grfatl specifies that both
the bottom row and the logically rightmost column receive special formatting and the cell does
not match CNFC value 0x0100, 0x0200, or 0x0800.

0x0800 The logically leftmost cell on the bottom row of the table if spormTTlIp. grfatl specifies that both
the bottom row and the logical ly leftmost column receive special formatting and the cell does not
match CNFC value 0x0100 or 0x0200.

A single cell position can match multiple CNFC values. For example the logically rightmost cell on
the top row could match all of these CNFC values: 0x0 100, 0x0008, 0x0001. Apply conditional
formatting in the following order.

50 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

CNFC Values Conditional Formatting Type
0x0040 or 0x0080 Odd or even horizontal banding
0x0010 or 0x0020 Odd or even vertical banding
0x0004 or 0x0008 First or last column

0x0001 or 0x0002 First or last row

0x0100, 0x0200, 0x0400, or 0x0800 Corner cell

Apply any property modifications specified in a matching sprmCCnf, if one exists, to the character
properties. Apply any property modifications specified in a matching sprmPCnf , if one exists, to
paragraph properties. Apply any property modifications specified in a matching sprmTCnf, if one

exists, to table properties.

Part 2:

1. Apply the algorithm from Direct Paragraph Formatting up to and including step 4. The remaining
steps o f that algorithm are applied later. Obtain GrpprlAndlstd . Using the algorithm from
Determining Properties of a Style, obtain any paragraph property modifications that are specified
by GrpprlAndistd .std .

2. Apply any paragraph property modifications obtained from GrpprlAndistd .istd in the previous
step. Next, apply any paragraph property modifications found in GrpprlAndistd .grpprl . Finally,
finish the remaining steps in the algorithm from Direct Paragraph Formatting that was started in

the previous step.

3. Ifthe paragraph that contains cp belongs to a list, apply any further paragraph property
modifications specified by the list. For information about how to determine whether a paragraph
belongs to a list and how to obtain the property modifications specified by the list, see
Determining List Formatting of a Paragraph . At this point the paragraph properties reflect those of
the para graph that contains cp . The remaining steps determine the character properties.

4. Using the algorithm from Determining Properties of a Style, obtain any character property
modifications specified by GrpprlAndistd .istd from step 1 of part 2 or the value of th e last
sprmPIstdPermute if any in GrpprlAndistd .grpprl . Apply any character property modifications
obtained from the style to the character properties.

5. Finally, using the algorithm from Direct Cha racter Formatting , obtain any property modifications to
be applied to character properties and apply them.

2.4.7 Application Data For VtHyperlink

The following algorithm specifies how hyperlink properties, as specified in MS - OSHARED] section
2.3.3.1.18, are associated with content i n a document construct their dwApp field value.
A Ifthe hyperlink is associated with an OfficeArtFSP shape, as specified in MS -ODRAW] section

2.2.40,the dwApp value MUST be Ox FFFFFFFF. Otherwise the hyperlink MUST be associated with
a picture, an external link to a picture source, or other document content.

A If the hyperlink is associated directly with a picture, as opposed to the hyperlink field associated

with the picture, or an external link to a picture source, the dwApp value MUST be set to an
FcCompressed structure that specifies the starting offset of the field result inthe WordDocument
Stream associated with the picture. For further specification on field results , see Plcfld .
A If the hyperlink is associated with any other type of document content , including the hyperlink
field of a WordArt shape or picture, the dwApp value MUST be set to an unsigned 4 -byte integer
that specifies the index into a Plcfld . The specified Plcfld item corresponds to the field begin
51 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d
%5bMS-ODRAW%5d.pdf#Section_8560795e77594745838ff7f2ef2f1872

character of the hyperlink field in the document content associated with the hyperlink property.

The hyperlink properties that have dwApp setto an index into a Plcfld MUST conform to a
specific ordering relative to e ach other when written. They MUST be written within the property

set hyperlink property array VtHyperlinks , as specified in [MS -OSHARED] section 2.3.3.1.21,
grouped according to the document Plcfld to which the indices apply, in the following order:

1. Main Document links.

2. Footnote Document links.

3. Header Document links.

4. Comment Document links.

5. Endnote Document links.

6. Textbox Document links.

7. Header Textbox Document links.

Within these groupings the hyperlink properties MUST be ordered from largest index to
smallest index.

Example:

A document contains two hyperlink fields in the Main Document, and two hyperlink fields in
the Footnote Document. The field indices for the hyperlinks (h1M, and h2M) in the Main

Document are 1 and 4 respectively. The field indices for the hyperlinks (h1F, and h2F) in the
Footnote Document are 0 and 3 respectively.

The hyperl ink properties in this example MUST be written in the order: h2M, h1M, h2F, h1F.

2.5 The File Information Block

251 Fib

The Fib structure contains information about the document and specifi es the file pointers to various
portions that make up the document.

The Fib is a variable length structure. With the exception of the base portion which is fixed in size,
every section is preceded with a count field that specifies the size of the next section.

1 2 S
0 0 0

base (32 bytes)

csw fibRgW (28 bytes)

52 /| 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

cslw

fibRgLw (88 bytes)

cbRgFcLcb fibRgFcLcbBlob (variable)

cswNew fibRgCswNew (variable)

base (32 bytes): The FibBase .

csw (2 bytes): An unsigned integer that specifies the count of 16 - bit values corresponding to
fibRgW that follow. MUST be 0xO00E.

fibRgW (28 bytes): The FibRgW97 .
cslw (2 bytes): An unsigned integer that specifies the count of 32 - bit values corresponding to

fibRgLw that follow. MUST be 0x0016.

fibRgLw (88 bytes): The EibRgL w97 .
cbRgFcLchb (2 bytes): An unsigned integer that specifies the count of 64 - bit values corresponding to

fibRgFcLcbBlob that follow. This MUST be one of the following values, depending on the value of
nFib .

Value of nFib cbRgFcLch
0x00C1 0x005D
0x00D9 0x006C
0x0101 0x0088
0x010C 0x00A4
0x0112 0x00B7
fibRgFcLcbBlob (variable): The EibRgFclLcb .
cswNew (2 bytes): An unsigned integer that specifies the count of 16 - bit values corresponding to
fibRgCswNew that follow. This MUST be one of the following values, depending on the value of
nFib .

53 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Value of nFib cswNew
0x00C1 0

0x00D9 0x0002
0x0101 0x0002
0x010C 0x0002
0x0112 0x0005

fibRgCswNew (variable): If cswNew is nonzero, thisis fibRgCswNew . Otherwise, it is not present
in the file.

2.5.2 FibBase

The FibBase structure is the fixed -size portion of the Fib.

0123456789(1)123456789512345678931
wlident nFib
unused lid
pnNext A|B|C|D E FIG|H|I |J|K|L[M
nFibBack IKey
envr NIO|P|Q|R S
reserved3 reserved4
reserved5
reserved6
wldent (2 bytes): An unsigned integer that specifies that this is a Word Binary File. This value MUST
be OXAS5EC.
nFib (2 bytes): An unsigned integer that specifies the version number of the file format used.

Superseded by FibRgCswNew .nFibNew if it is present. This value SHOULD <11> be Ox00C1.
unused (2 bytes): This value is undefined and MUST be ignored.

lid (2 bytes): A LID that specifies the install language of the application that is producing the
document. If nFib is OxO0D9 or greater, then any East Asian install lid or any install lid with a base
language of Spa nish, German or French MUST be recorded as 0x0409. If the nFib is 0x0101 or

greater, then any install lid with a base language of Viethamese, Thai, or Hindi MUST be recorded

as 0x0409.
pnNext (2 bytes): An unsigned integer that specifies the offset in the WordDocument stream __ of the
FIB for the document which contains all the AutoText items. If this value is 0, there are no

AutoText items attached. Otherwise the FIB is found at file location pnNext x512.1f fGlsy is1or
fDot is 0O, this value MUST be 0. If pnNext isnotO, each FIB MUST share the same values for

54 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

FibRgFcLch97 .fcPlcf BteChpx, FibRgFcLch97 .IcbPIcfBteChpx,
FibRgFcLcb97.fcPIcfBtePapx, FibRgFcLch97.IcbPIcfBtePapx, and FibRglLw97 .cbMac .

A - fDot (1 bit): Specifies whether this is a document template

B - fGlsy (1 hit): Specifies whether this is a document that contains only AutoText items (see
FibRgFcLcb97 .fcStthfGlsy , FibRgFcLch97 .fcPlcfGlsy and FibRgFcLch97 .fcStthGlsyStyle).

C - fComplex (1 hit): Specifi es that the last save operation that was performed on this document
was an incremental save operation.

D - fHasPic (1 bit): When set to O, there SHOULD <12> be no pictures in the document.

E - cQuickSaves (4 bits): An unsigned integer. If nFib is less than 0x00D9, then cQuickSaves
specifies the number of consecutive times this document was in crementally saved. If nFib is
0x00D9 or greater, then cQuickSaves MUST be OxF.

F - fEncrypted (1 bit): Specifies whether the document is encrypted or obfuscated as specified in
Encryption and Obf uscation .

G - fWhichTbIStm (1 bit): Specifies the Table stream _to which the FIB refers. When this value is set
to 1, use 1Table; when this value is set to 0, use OTable.

H - fReadOnlyRecommended (1 bit): Specifies whether the document author recommended that
the document be opened in read -only mode.

| - fWriteReservation (1 bit): Specifies whether the document has a write -reservation
pas sword

J - fExtChar (1 bit): This value MUST be 1.

K - fLoadOverride (1 bit): Specifies whether to override the language information and font that are
specified in the paragraph style at istd 0 (t he normal style) with the defaults that are appropriate

for the installation language of the application.

L - fFarEast (1 bit): Specifies whether the installation language of the application that created the
document was an East Asian language

M - fObfuscated (1 bit): If fEncrypted s 1, this bit specifies whether the document is obfuscated
by using XOR obfuscation (section 2.2.6.1); ot herwise, this bit MUST be ignored.

nFibBack (2 bytes): This value SHOULD <13> be Ox00BF. This value MUST be 0xO0BF or 0xO0C1.

IKey (4 bytes): If fEncrypted is1land fObfuscated is1,thisva lue specifies the XOR obfuscation
(section 2.2.6.1) password verifier. If fEncrypted is1and fObfuscated is 0, this value specifies
the size of the EncryptionHeader that is stored at the beginning of the Table stream as

described in Encryption and Obfuscation. Otherwise, this value MUST be 0.
envr (1 byte): This value MUST be 0, and MUST be ignored.

N - fMac (1 bit): This value MUST be 0, and MUST be ignored.

O - fEmptySpecial (1 bit): This value SHOULD <14> be 0 and SHOULD <15> be ignored.

P - fLoadOverridePage (1 bit): Specifies whether to override the section properties for page size,
orientation, and margins with the defaults that are appropriate for the installation language of the
application.

Q - reservedl (1 bit): This value is undefined and MUST be ignored.

R - reserved2 (1 bit): This value is undefined and MUST be ignored.

55 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

S - fSpareO (3 bits):
reserved3 (2 bytes):
reserved4 (2 bytes):
reserved5 (4 bytes):

reserved6 (4 bytes):

253 FibRgW97

This value is und efined and MUST be ignored.

This value MUST be 0 and MUST be ignored.

This value MUST be 0 and MUST be ignored.

This value is undefined and MUST be ignored.

This value is undefined and MUST be ignored.

The FibRgW97 structure is a variable -length portion of the Fib.

0|1|2(3|4|5(6|7]|8 3|/4(5(6|7]|8 é 1(2(3|4
reservedl reserved2
reserved3 reserved4
reserved5 reserved6
reserved? reserved8
reserved9 reservedl10
reservedll reserved12
reservedl13 lidFE

reservedl (2 bytes):
reserved2 (2 bytes):
reserved3 (2 bytes):
reserved4 (2 bytes):
reserved5 (2 bytes):
reserved6 (2 bytes):
reserved7 (2 bytes):
reserved8 (2 bytes):
reserved9 (2 bytes):
reservedl0 (2 bytes):
reservedll (2 bytes):
reservedl2 (2 byt

reservedl3 (2 bytes):

lidFE (2 bytes): A LI

This value is undefined and MUST be ignored.

This value is undefined and MUST be ignored.

This value is undefined and MUST be ignored.

This value is undefined and MUST be ignored.

This v alue SHOULD <16> be zero, and MUST be ignored.

This value SHOULD <17> be zero, and MUST be ignored.

This value SHOULD <18> be zero, and MUST be ignored.

This value SHOULD <19> be zero, and MUST be ignored.

This value SHOULD <20> be zero, and MUST be ignored.
This value SHOULD <21> be zero, and MUST be ignored.
This value SHOULD <22> be zero, and MUST be ignored.
This value SHOULD <23> be zero, and MUST be ignored.
This value SHOULD <24> be zero, and MUST be ig nored.

whose meaning depends on the

nFib_ value, which is one of the following.

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation

Release: November 16, 2021

56 / 576

nFib value Meaning

0x00C1 If FibBase .fFarEast is "true", this is the LID of the stored style names. Otherwise it MUST
be ignored.

0x00D9 The LID of the stored style names (STD .xstzName)

0x0101

0x010C

0x0112

254 FibRgLwW97

The FibRgLw97 structure is the third section of the FIB . This contains an array ~ of 4 -byte values.

cbMac

reservedl

reserved2

ccpText

ccpFtn

ccpHdd

reserved3

CCpAtn

ccpEdn

ccpTxbx

ccpHdrTxbx

reserved4

reserved5

reserved6

reserved?

reserved8

reserved9

57 /| 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

reserved10
reservedll
reserved12
reservedl13
reservedl14
cbMac (4 bytes): Specifies the count of bytes of those written to the WordDocument stream _ of the
file that have any meaning. All bytes in the WordDocument stream at offset cbMac and greater
MUST be ignored.
reservedl (4 bytes): This value is undefined and MUST be ignored.
reserved? (4 bytes): This value is undefined and MUST be ignored.
ccpText (4 bytes): A signed integer that specifies the count of CPsinthe main document . This value
MUST be zero, 1, or greater.
ccpFtn (4 bytes): A signed integer that specifies the cou nt of CPsinthe footnote subdocument . This
value MUST be zero, 1, or greater.
ccpHdd (4 bytes): A signed integer that specifies the count of CPs in the header subdocument . This
value MUST be zero, 1, or greater.
reserved3 (4 bytes): This value MUST be zero and MUST be ignored.
cCpAtn (4 bytes): A signed integer that specifies the count of CP sinthe comment subdocument
This value MUST be zero, 1, or greater.
ccpEdn (4 bytes): A signed integer that specifies the count of CPs in the endnote subdocument . This
value MUST be zero, 1, or greater.
ccpTxbx (4 bytes): A signed integer that specifies the count of CPs in the textbox subdocument of

the main document . This value MUST be zero, 1, or greater.

ccpHdrTxbx (4 bytes): A signed integer that specifies the count of CPs in the textbox subdocument
of the header . This value MUST be zero, 1, or greater.

reserved4 (4 bytes): This value is undefined and MUST be ignored.
reserved5 (4 bytes): This value is undefined and MUST be ignored.

reserved6 (4 bytes): This value MUST be equal or less than the number of data elements in
PlcBteChpx , as specified by FibRgFcLcbh97 .fcPlcfBteChpx and
FibRgFcLch97 .IcbPIcfBteChpx . This value MUST be ignored.

reserved?7 (4 bytes): This value is undefined and MUST be ignored
re served8 (4 bytes): This value is undefined and MUST be ignored
reserved9 (4 bytes): This value MUST be less than or equal to the number of data elements in

PlcBtePapx , as specified by FibRgFcLch97 .fcPlcfBtePapx and
FibRgFcLcb97 .IcbPIcfBtePapx . This value MUST be ignored.

reservedl0 (4 bytes): This value is undefined and MUST be ignored.

58 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

reservedll (4 bytes): This value is undefined and MUST be ignored.

reserved12 (4 bytes): This value SHOULD =25 pe zero, and MUST be ignored.
reserved13 (4 bytes): This value MUST be zero and MUST be ignored.
reserved14 (4 bytes): This value MUST be zero and MUST be ignored.
255 FibRgFcLcb
The FibRgFcLcb structure specifies the file offsets and byte counts for various portions of the data in
the document. The structure of FibRgFcLcb depends onth e value of nFib , which is one of the
following.
Value Meaning
0x00C1 fibRgFcLch97
0x00D9 fibRgFcLcb2000
0x0101 fibRgFcLcb2002
0x010C fibRgFcLcb2003
0x0112 fibRgFcLcb2007
25.6 FibRgFcLch97
The FibRgFcLch97 structure is a variable -length portion of the Fib.
1 2 &
0123456789012345678901234567890
fcStshfOrig
IcbStshfOrig
fcStshf
IcbStshf
fcPlIcffndRef
IcbPIcffndRef
fcPlcffnd Txt
IcbPlcffnd Txt
fcPIcfandRef
IcbPIcfandRef
fcPlcfandTxt

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

59 / 576

IcbPIcfandTxt

fcPlcfSed

IcbPIcfSed

fcPIcPad

IcbPIcPad

fcPIcfPhe

IcbPIcfPhe

fcSttbfGlsy

IcbSttbfGlsy

fcPIcfGlsy

IcbPIcfGlsy

fcPlcfHdd

IcbPlcfHdd

fcPlcfBteChpx

IcbPIcfBteChpx

fcPIcfBtePapx

IcbPIcfBtePapx

fcPIcfSea

IcbPIcfSea

fcSttbfFfn

IcbSttbfFfn

fcPIcfFldMom

IcbPIcfFIdMom

fcPIcfFIdHdr

IcbPIcfFIdHdr

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

60 / 576

fcPIcfFIdFtn

IcbPIcfFIdFtn

fcPIcfFIdAtn

IcbPIcfFIdAtn

fcPIcfFIdMcr

IcbPIcfFIdMcr

fcSttbfBkmk

IchSttbfBkmk

fcPIcfBkf

IcbPIcfBkf

fcPIcfBkI

IcbPIcfBKI

fcCmds

IcbCmds

fcUnusedl

IcbUnused1

fcSttbfMcer

IcbSttbfMcr

fcPrDrvr

IcbPrDrvr

fcPrEnvPort

IcbPrEnvPort

fcPrEnvLand

IcbPrEnvLand

fcWss

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

61 / 576

IcbWss

fcDop

IcbDop

fcSttbfAssoc

IcbStthfAssoc

fcClx

IcbClIx

fcPlcfPgdFtn

IcbPIcfPgdFtn

fcAutosaveSource

IcbAutosaveSource

fcGrpXstAtnOwners

IcbGrpXstAtnOwners

fcSttbfAtnBkmk

IcbSttbfAtnBkmk

fcUnused2

IcbUnused2

fcUnused3

IcbUnused3

fcPlcSpaMom

IcbPlcSpaMom

fcPlcSpaHdr

IcbPlcSpaHdr

fcPIcfAtnBkf

IcbPIcfAtnBkf

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

62 / 576

fcPIcfAtnBKI

IcbPIcfAtnBKI

fcPms

IcbPms

fcFormFIdSttbs

IcbFormFIdSttbs

fcPIcfendRef

IcbPIcfendRef

fcPlcfendTxt

IcbPIcfendTxt

fcPIcfFIdEdn

IcbPIcfFIdEdn

fcUnused4

IcbUnused4

fcDgglnfo

IcbDgglnfo

fcSttbfRMark

IcbSttbfRMark

fcSttbfCaption

IcbSttbfCaption

fcSttbfAutoCaption

IcbSttbfAutoCaption

fcPIcfWkb

IcbPIcfwkb

fcPlcfSpl

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

63 / 576

IcbPIcfSpl

fcPlcftxbxTxt

IcbPlcftxbxTxt

fcPIcfFIdTxbx

IcbPIcfFIdTxbx

fcPlcfHdrtxbxTxt

IcbPIcfHdrtxbxTxt

fcPIcffldHdrTxbx

IcbPIcffldHdrTxbx

fcStwUser

IcbStwUser

fcSttbTtmbd

IcbSttbTtmbd

fcCookieData

IcbCookieData

fcPgdMotherOIdOld

IcbPgdMotherOIdOld

fcBkdMotherOIldOId

IcbBkdMotherOIldOId

fcPgdFtnOIdOId

IcbPgdFtnOIdOId

fcBkdFtnOIldOId

IcbBkdFtnOIdOld

fcPgdEdnOIdOIld

IcbPgdEdnOIdOId

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

64 / 576

fcBkdEdNnOIdOld

IcbBkdEdnOldOld

fcSttbfintlFid

IchSttbfintlFld

fcRouteSlip

IcbRouteSlip

fcSttbSavedBy

IcbSttbSavedBy

fcSttbFnm

IcbSttbFnm

fcPIfLst

IcbPIfLst

fcPIfLfo

IcbPIfLfo

fcPIcfTxbxBkd

IcbPIcfTxbxBkd

fcPlcfTxbxHdrBkd

IcbPIcfTxbxHdrBkd

fcDocUndoWord9

IcbDocUndoWord9

fcRgbUse

IcbRgbUse

fcUsp

IcbUsp

fcUskf

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

65 / 576

lcbUskf

fcPlcupcRgbUse

IcbPlcupcRgbUse

fcPlcupcUsp

IcbPlcupcUsp

fcSttbGlsyStyle

IcbSttbGlsyStyle

fcPlgosl

IcbPlgosl

fcPlcocx

IcbPlcocx

fcPlcfBteLvc

IcbPIcfBteLvc

dwLowDateTime

dwHighDateTime

fcPIcfLvcPrel0

IcbPIcfLvcPrel0

fcPlcfAsumy

IcbPIcfAsumy

fcPlcfGram

IcbPIcfGram

fcSttbListNames

IcbSttbListNames

fcSttbfUssr

IcbSttbfUssr

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

66 / 576

fcStshfOrig (4 bytes): This value is undefined and MUST be ignored.
IcbStshfOrig (4 bytes): This value is undefined and MUST be ignored.

fcStshf (4 bytes): An unsigned integer that specifies an offset in the Table Stream . An STSH_that
specifies the style sheet for this document begins at this offset.

IcbStshf (4 bytes): An unsigned integer that specifies the size, in bytes, of the STSH that begins at
offset fcStshf inthe Table Stream. This MUST be a nonzero value.

fcPlcffndRef (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PicffndRef _ begins at this offset and specifies the locations of footnote references in the Main
Document , and whether those references use auto -numbering or custom symbols. If
IcbPIcffndRef is zero, fcPlcffndRef is undefined and MUST be ignored.

IcbPIcffndRef (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcffndRef
that begins at offset ~ fcPlIcffndRef in the Table Stream.

fcPlcffndTxt (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcfindTxt _ begins att his offset and specifies the locations of each block of footnote text in the
Footnote Document . If IcbPlcffndTxt is zero, fcPlcffndTxt is undefined and MUST be ignored.

IcbPlcffndTxt (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcffndTxt
that begins at offset ~ fcPlcffndTxt in the Table Stream.

IcbPlcffndTxt MUST be zero if FEibRgLw97 .ccpFtn is zero, and MUST b e nonzero if
FibRgLwW97.ccpFtn is nonzero.

fcPlcfandRef (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PicfandRef _ begins at this offset and specifies the dates, user initials, and locations of comments
in the Main Document. If IcbPIcfandRef is zero, fcPlcfandRef is undefined and MUST be ignored.

IcbPIcfandRef (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcfandRef at
offset fcPlcfandRef in the Table Stream.

fcPlcfandTxt (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcfandTxt begins at this offset and specifies the locations of comment text ranges in the

Comment Document . If IcbPlcfandTxt is zero, fcPlcfandTxt is undefined, and MUST be ignored.

IcbPIcfandTxt (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcfandTx t at
offset fcPlcfandTxt inthe Table Stream.

IcbPlcfandTxt MUST be zero if FibRgLw97.ccpAtn is zero, and MUST be nonzero if
FibRgLwW97.ccpAtn is nonzero.

fcPIcfSed (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A PlcfSed
begins at this offset and specifies the locations of property lists for each section in the Main
Document. If IcbPIcfSed is zero, fcPlcfSed is undefined and MUST be ignored.

IcbPIcfSed (4 bytes): An un signed integer that specifies the size, in bytes, of the PlcfSed that
begins at offset fcPlcfSed in the Table Stream.

fcPIcPad (4 bytes): This value is undefined and MUST be ignored.

IcbPIcPad (4 bytes): This value MUST be zero, and MUST be ignored.

fcPIcfPhe (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plc_ begins
at this offset and specifies version -specific information about paragraph height. This Plc SHOULD

NOT<26> be emitted and SHOULD <27> be ignored.

67 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

IcbPIcfPhe (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plc at offset
fcPIcfPhe in the Table Stream.

fcSttbfGlsy (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A SttbfGlsy
that contains information about the AutoText items that are defined in this document begins at
this offset.

IcbSttbfGlsy (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbfGlsy at

offset fcSttbfGIlsy inthe Table Stream. If base.fGlsy ofthe Fib that contains this FibRgFcLcb97
is zero, this value MUST be zero.

fcPIcfGlsy (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A PlcfGlsy
that contains information about the AutoText items that are defined in this document begins at
this offset.

IcbPIcfGlsy (4 bytes): An unsigned integer that specifies the size, in bytes, of the PicfGlsy at offset

fcPIcfGIlsy in the Table Stream. If base.fGlsy ofthe Fib that contains this FibRgFcLcb97 s zero,
this value MUST be zero.

fcPlcfHdd (4 bytes): An unsigned integer that specifies the offset in the Table Stream where a
Picthdd _ begins. The Plcfhdd specifies the locations of each block of header/footer text in the
WordDocument Stream . If IcbPlcfHdd is O, fcPlcfHdd s undefined and MUST be ignored.

IcbPIcfHdd (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcthdd at offset
fcPlcfHdd in the Table Stream. If there is no Plcfhdd , this value MUST be zero. A Plcfhdd MUST
existif FibRgLW97 .ccpHdd indicates that there are characters in the Header Document _ (that is,

if FIbRgLW97 .ccpHdd s greater than 0). Otherwise, the Plcthdd MUST NOT exist.

fcPlcfBteChpx (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcBteChpx begins at the offset. fcPIcfBteChpx MUST be greater than zero, and MUST be a valid
offset in the Table Stream.

IcbPIcfBteChpx (4 bytes): An unsigned integer that specifies the size, in bytes, o fthe PlcBteChpx
at offset fcPlcfBteChpx in the Table Stream. IcbPIcfBteChpx MUST be greater than zero.

fcPIcfBtePapx (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcBtePapx begins at the offset. fcPlcfBtePapx MUST be greater than zero, and MUST be a valid
offset in the Table Stream.

IcbPIcfBtePapx (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcBtePapx
at offset fcPlcfBtePapx in the Tab le Stream. IcbPIcfBteChpx MUST be greater than zero.

fcPlcfSea (4 bytes): This value is undefined and MUST be ignored.

IcbPIcfSea (4 bytes): This value MUST be zero, and MUST be ignored.

fcSttbfFfn (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An SttbfFfn
begins at this offset. This table specifies the fonts that are used in the document. If IcbSttbfFfn is

0, fcSttbfFfn is undefined and MUST be ignored.

IcbSttbfFfn (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbfFfn at offset
fcSttbfFfn - in the Table Stream.

fcPIcfFldMom (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfld
begins at this offset and specifies the locations of field characters in the Main Document. All CPs in
this Plcfld MUST be greater than or equal to 0 and less than or equal to Fib RgLw97.ccpText f
IcbPIcfFldMom is zero, fcPIcfFldMom is undefined and MUST be ignored.

IcbPIcfFIdMom (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfld at
offset fcPIcfFldMom in the Table Stream.

68 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcPIcfFIdHdr (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfld
begins at this offset and specifies the locations of field characters in the Header Document. All CPs
in this Plcfld are relative to the starting position of the Header Document. All C Ps in this Plcfld
MUST be greater than or equal to zero and less than or equal to FibRgLW97 .ccpHdd . If
IcbPIcfFldHdr is zero, fcPIcfFIdHdr is undefined and MUST be ignored.

IcbPIcfFIdHdr (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfld at offset
fcPIcfFIdHdr in the Table Stream.

fcPIcfFIdFtn (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfld
begins at this offset and specifies the locations of field characters in the Footnote Document. All
CPsinthis Plcfld are relative to the starting position of the Footnote Document. All CPs in this
Plcfld MUST be greater than or equal to zero and less than or equal to FibRgLW97.ccpFtn f
IcbPIcfFIdFtn is zero, fcPIcfFIdFtn is undefined, and MUST be igno red.

IcbPIcfFIdFtn (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfld at offset
fcPIcfFIdFtn in the Table Stream.

fcPIcfFIdAtn (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfld
begins at this offset and specifies the locations of field characters in the Comment Document. All
CPsinthis Plcfld are relative to the starting position of the Comment Document. All CPs in this
Plcfld MUST be greater than or equal to zero and less than or equal to FibRgLwW97.ccpAtn f
IcbPIcfFIdAtn is zero, fcPIcfFIdAtn is undefined and MUST be ignored.

IcbPIcfFIdAtn (4 bytes): An unsigned integer that specifies the size, in bytes, of the Picfld at offset
fcPIcfFIdAtn in the Table Stream.

fcPIcfFldMcr (4 bytes): This value is undefined and MUST be ignored.

IcbPIcfFldMcr (4 bytes): This value MUST be zero, and MUST be ignored.

fcSttbfBkmk (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
SttbfBkmk __ that contains the names of the bookmarks in the document begins at this offset. If

IcbSttbfBkmk is zero, fcSttbfBkmk is undefi ned and MUST be ignored.

This SttbfBkmk is parallel to the Plcfbkf at offset fcPIcfBkf in the Table Stream. Each string
specifies the name of the bookmark that is associated with the data element which is located at
the same offset in that Plcfbkf . For this reason, the SttbfBkmk that begins at offset

fcSttbfBkmk |, and the Plcfbkf that begins at offset ~ fcPIcfBkf , MUST contain the same number of

elements.

IcbStthfBkmk (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbfBkmk at
offset fcSttbfBkmk

fcPIcfBkf (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfbkf that
contains information about the standard bookmarks in the document begins at t his offset. If

IcbPIcfBkf is zero, fcPlcfBkf is undefined and MUST be ignored.

Each data element in the Plcfbkf is associated, in a one -to-one correlation, with a data element in
the Plcfbkl at of fset fcPlcfBkl . For this reason, the Plcfbkf that begins at offset fcPlcfBkf , and
the Plcfbkl that begins at offset fcPIcfBkl , MUST contain the same number of data elements. This
Plcfbkf is parallel to the SttbfBkmk at offset fcSttbfBkmk in the Table Strea m. Each data
elementinthe Plcfbkf specifies information about the bookmark that is associated with the

element which is located at the same offset in that SttbfBkmk . For this reason, the Plcfbkf that
begins at offset fcPIcfBkf , andthe StthfBkmk that beg ins at offset fcSttbfBkmk , MUST contain
the same number of elements.

The largest value that a CP marking the start or end of a standard bookmark is allowed to have is
the CP representing the end of all document parts .

69 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

IcbPIcfBkf (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkf at offset
fcPIcfBkf

fcPIcfBkl (4 bytes): An unsigned in teger that specifies an offset in the Table Stream. A Plcfbkl that
contains information about the standard bookmarks in the document begins at this offset. If
IcbPIcfBkl is zero, fcPlcfBkl is undefined and MUST be ignored.

Each data element in the Plcfkl is associated, in a one -to-one correlation, with a data element in
the Plcfbkf atoffset fcPIcfBkf . For this reason, the Plcfbkl that begins at offset ~ fcPIcfBkl , and
the Plcfbkf that begins at offset fcPlcfBkf , MUST contain the same number of data elements

The largest value that a CP marking the start or end of a standard bookmark is allowed to have is
the value of the CP representing the end of all document parts.

IcbPIcfBkl (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkl at offset
fcPlcfBKI

fcCmds (4 bytes): An unsigned integer that specifies the offset in the Table Stream of a Tcg that
specifies command -related customizations. If IcbCmds is zero, fcCmds is unde fined and MUST be
ignored.

IcbCmds (4 bytes): An unsigned integer that specifies the size, in bytes, of the Tcg at offset
fcCmds .

fcUnusedl (4 bytes): This value is undefined and MUST be ignored.

IcbUnused1 (4 bytes): This value MUST be zero, and MUST be i gnored.

fcSttbfMcr (4 bytes): This value is undefined and MUST be ignored.

IcbSttbfMcr (4 bytes): This value MUST be zero, and MUST be ignored.

fcPrDrvr (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The PrDrvr_,

which contains printer driver information (the names of drivers, port, and so on), begins at this
offset. If IcbPrDrvr is zero, fcPrDrvr is undefined and MUST be ignored.

IcbPrDrvr (4 bytes) : An unsigned integer that specifies the size, in bytes, of the PrDrvr at offset
fcPrDrvr

fcPrEnvPort (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
PrEnvPort _ that is the print environment in portrait mode begins at this offset. If IcbPrEnvPort s

zero, fcPrEnvPort is undefined and MUST be ignored.

IcbPrEnvPort (4 bytes): An unsigned integer that specifies the size, in bytes, of the PrEnvPort at
offset fcPrEnvP ort .

fcPrEnvLand (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
PrEnvLand that is the print environment in landscape mode begins at this offset. If
IcbPrEnvLand is zero, fcPrEnvLand is undefined and MUST be ignored.

IcbPrEnvLand (4 bytes): An unsigned integer that specifies the size, in bytes, of the PrEnvLand at
offset fcPrEnvLand

fcWss (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Selsf begins at
this offset and specifies the last selection that was made in the Main Document. If IcbWss s zero,

fcWss is undefined and MUST be ignored.

IcbWss (4 bytes): An unsigned integer that specifies the size, in bytes, of the Selsf at offset fcWss .
fcDop (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Dop begins at
this offset.
70 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

IcbDop (4 bytes): An unsigned integer that specifies the size, in bytes, of the Dop at fcDop . This
value MUST NOT be zero.

fcSttbfAssoc (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
SttbfAssoc __ that contains strings that are associated with the document begins at this offset.

IcbSttbfAssoc (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbfAssoc at
offset fcSttbfAssoc . This value MUST NOT be zero.

fcCIx (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Clx_ begins at
this offset.

IcbClIx (4 bytes): An unsigned integer that specifies the size, in bytes, of the Clx at offset fcClIx in
the Table Stream. This value MUST be greater than zero.

fcPIcfPgdFtn (4 bytes): This value is undefined and MUST be ignored.

IcbPIcfPgdFtn (4 bytes): This value MUST be zero, and MUST be ignored.

fcAutosaveSource (4 bytes): This value is undefined and MUST be ignored.

IcbAutosaveSource (4 bytes): This value MUST be zero and MUST be ignored.

fcGrpXstAtnOwners (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
array of XSTs begins at this offset. The value of cch for all XSTs in this array MUST be less than
56. The number of entries in this array is limited to Ox7FFF. This array contains the names of
authors of comments in the document. The names in this array MUST be unique. If no comments
are defined, IcbGrpXstAthnOwners and fcGrpXstAtnOwners MUST be zero and MUST be
ignored. If any comments are in the document, fcGrpXstAtnOwners MUST point to a valid array
of XSTs.

IcbGrpXstAtnOwners (4 bytes): An unsigned integer that specifies the size, in bytes, of the XST
array at offset fcGrpXstAtnOwners in the Table Stream.

fcSttbfAtnBkmk (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
SttbfAtnBkmk _ that contains information about the annotation bookmarks in the document
begins at this offset. If IcbSttbfAtnBkmk is zero, fcSttbfAtnBkmk is undefined and MUST b e
ignored.
The SttbfAtnBkmk is parallel to the Plcfbkf at offset fcPIcfAtnBkf in the Table Stream. Each
element in the SttbfAtnBkmk specifies information about the bookmark which is associated with
the data element that is located at the same offset in th at Plcfbkf, so the SttbfAtnBkmk beginning

at offset fcSttbfAtnBkmk and the Plcfbkf beginning at offset fcPIcfAtnBKf MUST contain the
same number of elements. An additional constraint upon the number of elements in the
SttbfAtnBkmk is specified in the descr iption of fcPIcfAtnBkf

IcbSttbfAtnBkmk (4 bytes): An unsigned integer that specifies the size, in bytes, of the
SttbfAtnBkmk at offset fcSttbfAtnBkmk
fcUnused2 (4 bytes): This value is undefined and MUST be ignored.
IcbUnused?2 (4 bytes): This value MU ST be zero, and MUST be ignored.
fcUnused3 (4 bytes): This value is undefined and MUST be ignored.
IcbUnused3 (4 bytes): This value MUST be zero, and MUST be ignored.
fcPlcSpaMom (4 bytes): An unsigned integer that specifies an offset in the Table Strea m. A PlcfSpa
begins at this offset. The PlcfSpa contains shape information for the Main Document. All CPs in this
PlcfSpa are relative to the starting position of the Main Document and MUST be greater than or
equal to zero and less than or equal to ccpText in FibRgLwW97. The final CP is undefined and MUST

71/ 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

be ignored, though it MUST be greater than the previous entry. If there are no shapes in the Main
Document, IcbPlcSpaMom and fcPlc SpaMom MUST be zero and MUST be ignored. If there are
shapes in the Main Document, fcPlcSpaMom MUST point to a valid PlcfSpa structure.

IcbPlcSpaMom (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcfSpa at
offset fcPlcSpaMom

fcPlcSpaHdr (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A PlcfSpa
begins at this offset. The PlcfSpa contains shape information for the Header Document. All CPs in
this PlcfSpa are relative to the starting position of the Header Document and MUST be greater
than or equal to zero and less than or equal to ccpHdd in FibRgLw97. The final CP is undefined
and MUST be ignored, though this value MUST be greater than the previous entry. If there are no
shapes in the Header Document , IcbPlcSpaHdr and fcPlcSpaHdr MUST both be zero and MUST
be ignored. If there are shapes in the Header Document, fcPIcSpaHdr MUST point to a valid
PlcfSpa structure.

IcbPlcSpaHdr (4 bytes): An unsigned integer that specifies the size, in bytes, of the PI cfSpa at the
offset fcPlcSpaHdr

fcPIcfAtnBkf (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfbkf
that contains information about annotation bookmarks in the document begins at this offset. If
IcbPIcfAtnBkf is zero, fcPl cfAtnBkf is undefined and MUST be ignored.

Each data element in the Plcfbkf is associated, ina one -to-one correlation, with a data element in
the Plcfbkl at offset fcPIcfAtnBkl . For this reason, the Plcfbkf that begins at offset

fcPIcfAtnBkf , and the Plc fbkl that begins at offset fcPIcfAtnBkl , MUST contain the same
number of data elements. The Plcfbkf is parallel to the SttbfAtnBkmk at offset fcSttbfAtnBkmk
in the Table Stream. Each data element in the Plcfbkf specifies information about the bookmark
whic h is associated with the element that is located at the same offset in that SttbfAtnBkmk. For

this reason, the Plcfbkf that begins at offset fcPIcfAtnBkf |, and the SttbfAtnBkmk that begins at
offset fcSttbfAtnBkmk , MUST contain the same number of elements.

The CP range of an annotation bookmark MUST be in the Main Document part.

IcbPIcfAtnBKf (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkf at
offset fcPIlcfAtnBkf

fcPIcfAtnBKI (4 bytes): An unsigned integer that specifies an o ffset in the Table Stream. A Plcfbkl
that contains information about annotation bookmarks in the document begins at this offset. If
IcbPIcfAtnBKI is zero, then fcPIcfAtnBKkI is undefined and MUST be ignored.

Each data element in the Plcfbkl is associated, in a one -to-one correlation, with a data element in
the Plcfbkf atoffset fcPIcfAtnBkf . For this reason, the Plcfbkl that begins at offset
fcPIcfAtnBkl , and the Plcfbkf that begins at offset fcPIcfAtnBkf , MUST contain the same
number of dat a elements.

The CP range of an annotation bookmark MUST be in the Main Document part.

IcbPIcfAtnBKI (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkl at
offset fcPIlcfAtnBKI

fcPms (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Pms , which
contains the current state of a print merge operation, begins at this offset. If IcbPms s zero,

fcPms is undefined and MUST be ignored.

IcbPms (4 byte s): An unsigned integer which specifies the size, in bytes, of the Pms at offset
fcPms .
fcFormFIdSttbs (4 bytes): This value is undefined and MUST be ignored.

72 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

IcbFormFIdSttbs (4 bytes): This value MUST be zero, and MUST be ignored.

fcPIcfendRef (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PicfendRef that begins at this offset specifies the locations of endnote references in the Main
Document and whether those refe rences use auto -numbering or custom symbols. If
IcbPIcfendRef is zero, fcPlcfendRef is undefined and MUST be ignored.

IcbPIcfendRef (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcfendRef
that begins at offset fcPIcfendRef int he Table Stream.

fcPlcfendTxt (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcfendTxt _ begins at this offset and specifies the locations of each block of endnote text in the

Endnote Document . If IcbPlcfendTxt is zero, fcPlcfendTxt is undefined and MUST be ignored.

IcbPlcfendTxt (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfe ndTxt
that begins at offset fcPlcfendTxt in the Table Stream.

IcbPlcfendTxt MUST be zero if FibRgLW97.ccpEdn is zero, and MUST be nonzero if
FibRgLwW97.ccpEdn is nonzero.

fcPIcfFIdEdn (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfld
begins at this offset and specifies the locations of field characters in the Endnote Document. All
CPsinthis Plcfld are relative to the starting position of the Endnote Document. All CPs in this
Plcfld MUST be greater than or equal to ze ro and less than or equal to FibRgLwW97.ccpEdn Lf
IcbPIcfFIdEdn is zero, fcPIcfFIdEdn is undefined and MUST be ignored.

IcbPIcfFIdEdn (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfld at offset
fcPIcfFIdEdn in the Table Stream

fcUnused4 (4 bytes): This value is undefined and MUST be ignored.

IcbUnused4 (4 bytes): This value MUST be zero, and MUST be ignored.

fcDgglnfo (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
OfficeArtContent that contains information about the drawings in the document begins at this
offset.

IcbDgglinfo (4 bytes): An unsigned integer that specifies the size, in bytes, of the OfficeArtContent
at the offset fcDggin fo . If IcbDgginfo is zero, there MUST NOT be any drawings in the
document.

fcSttbfRMark (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
SttbfRMark __ that contains th e names of authors who have added revision marks or comments to
the document begins at this offset. If IcbSttbfRMark is zero, fcSttbfRMark is undefined and
MUST be ignored.

IcbSttbfRMark (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbfRMark
at the offset fcSttbfRMark

fcSttbfCaption (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
SttbfCaption that contains information about the captions that are defined in this document
begins at this offset. If IcbSttbfCaption is zero, fcSttbfCaption is undefined and MUST be
ignor ed. If this document is not the Normal template , this value MUST be ignored.

IcbSttbfCaption (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbfCaption

at offset fcSttbfCaption in the Table Stream. If base.fDot of the Fib that contains this
FibRgFcLch97 is zero, this value MUST be zero.

fcSttbfAutoCaption (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
SttbfAutoCaption that contains information about the AutoCaption strings defined in this

73 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

document begins at this offset. If IcbSttbfAuto Caption is zero, fcSttbfAutoCaption is undefined
and MUST be ignored. If this document is not the Normal template, this value MUST be ignored.

IcbSttbfAutoCaption (4 bytes): An unsigned integer that specifies the size, in bytes, of the
SttbfAutoCaption at offset fcSttbfAutoCaption in the Table Stream. If base.fDot ofthe Fib
that contains this ~ FibRgFcLcb97 is zero, this MUST be zero.

fcPlcfWkb (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A PlcfWKB
that contains information about all master documents and subdocuments begins at this offset.

IcbPIcfWkb (4 bytes): An unsigned integer that specifies the size, in bytes, of the PIcfWKB at
offset fcPIcfWkb inthe Table Str eam. If IcbPIlcfWkb is zero, fcPlcfWkb is undefined and MUST
be ignored.

fcPlcfSpl (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfspl ,

which specifies the state of the spell checker for each text range, begins at this offset. If
IcbPIcfSpl is zero, then fcPIcfSpl is undefined and MUST be ignored.

IcbPIcfSpl (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfspl that begins
at offset fcPlc fSpl inthe Table Stream.

fcPlcftxbxTxt (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcftxbxTxt __ begins at this offset and specifies which ranges of text are cont ained in which

textboxes. If IcbPlcftxbxTxt is zero, fcPlcftxbxTxt is undefined and MUST be ignored.

IcbPlcftxbxTxt (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcftxbxTxt
that begins at offset fcPlcftxbxTxt in the Table Stream

IcbPlcftxbxTxt MUST be zero if FibRgLwW97.ccpTxbx is zero, and MUST be nonzero if
FibRgLW97.ccpTxbx is nonzero.

fcPIcfFIdTxbx (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfld
begins at this offset and specifies the lo cations of field characters in the Textbox Document . All
CPsinthis Plcfld are relative to the starting position of the Textbox Document. All CPs in this
Plcfld MUST be greater than or equal to z ero and less than or equal to FibRgLw97.ccpTxbx Lf
IcbPIcfFIdTxbx is zero, fcPIlcfFIdTxbx is undefined and MUST be ignored.

IcbPIcfFIdTxbx (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfld at
offset fcPIcfFIdTxbx in the Table Stream.

fcPlcfHdrtxbxTxt (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcfHdrtxbxTxt begins at this offset and specifies which ranges of text are contained in whi ch
header textboxes

IcbPIcfHdrtxbxTxt (4 bytes): An unsigned integer that specifies the size, in bytes, of the
PlcfHdrtxbxTxt that begins at offset ~ fcPIcfHdrtxbxTxt in the Table Stream.

IcbPIcfH drtxbxTxt ~ MUST be zero if FibRgLw97.ccpHdrTxbx is zero, and MUST be nonzero if
FibRgLwW97.ccpHdrTxbx is nonzero.

fcPIcffldHdrTxbx (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
Plcfld begins at this offset and specifies the | ocations of field characters in the Header Textbox
Document. All CPs in this Plcfld are relative to the starting position of the Header Textbox
Document. All CPs in this Plcfld MUST be greater than or equal to zero and less than or equal to
FibRgLwW97.ccpHd rTxbx . If IcbPIcffldHdrTxbx is zero, fcPIcffldHdrTxbx is undefined, and
MUST be ignored.

IcbPIcffldHdrTxbx (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfld at
offset fcPlcfldHdrTxbx in the Table Stream.

74 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcStwUser (4 bytes): An unsigned integer that specifies an offset into the Table Stream. An

StwUser _ that specifies the user -defined variables and VBA digital signature , as specified by
MS - OSHARED] section 2.3.2, begins at this offset. If IcbStwUser is zero, fcStw User is
undefined and MUST be ignored.

IcbStwUser (4 bytes): An unsigned integer that specifies the size, in bytes, of the StwUser at offset
fcStwUser

fcSttbTtmbd (4 bytes): An unsigned integer that specifies an offset into the Table Stream. A
SttbTtmbd __ begins at this offset and specifies information about the TrueType font s that are
embedded in the document. If IcbSttbTtmbd is zero, fc SttbTtmbd is undefined and MUST be
ignored.

IcbSttbTtmbd (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbTtmbd at

offset fcSttbTtmbd

fcCookieData (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An RgCdb
begins at this offset. If IcbCookieData is zero, fcCookieData is undefined and MUST be ignored.
Otherwise, fcCookieData MAY<28> be ignored.

IcbCookieData (4 bytes): An unsigned integer that specifies the size, in bytes, of the RgCdb at
offset fcCookieData inthe Table Stream.

fcPgdMotherOIdOId (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
depr ecated document page layout cache begins at this offset. Information SHOULD NOT <29> be
emitted at this offset and SHOULD <30>_beignored. If IcbPgdMotherOIdOld is zero,
fcPgdMotherOIdOIld is undefined and MUST be ignored.

IcbPgdMotherOIldOld (4 bytes): An unsigned integer that specifies the size, in bytes, of the
deprecated document page layout cache at offset fcPgdMotherOldOId in the Table Stream.

fcBkdMotherOIldOId (4 bytes): An unsigned integer that specifies an offset in the Table Stream.
Deprecated document text flow break cache begins at this offset. Information SHOULD NOT <31>
be emitted at this offset and SHOULD <32> beignored. If IcbBkdMotherOldOIld is zero,
fcBkdMotherOIdOId is undefined and MUST be ignored.

IcbBkdMotherOIdOId (4 bytes): An un signed integer that specifies the size, in bytes, of the
deprecated document text flow break cache at offset fcBkdMotherOIdOId in the Table Stream.

fcPgdFtnOIdOId (4 bytes): An unsigned integer that specifies an offset in the Table Stream.
Deprecated footn ote layout cache begins at this offset. Information SHOULD NOT <33> be emitted
at this offset and SHOULD <34> be ignored. If IcbPgdFtnOIdOId is zero, fcPgdFtnOIdOId is
undefined and MUST be ignored.

IcbPgdFtnOIdOId (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
footnote layout cache at offset fcPgdFtnOIdOId in the Table Stream.

fcBkdFtnOIdOId (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated footnote text flow break cache begins at this offset. Information SHOULD NOT <35> be
emitted at thi s offset and SHOULD <36> be ignored. If IcbBkdFtnOIdOId is zero,
fcBkdFtnOIdOId is undefined and MUST be ignored.

IcbBkdFtnOIdOId (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
footnote text flow break cache at offset fcBkdFtnOIdOId in the Table Stream.

fcPgdEdNOIdOId (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated endnote layout cache begins at this offset. Information SHOULD NOT <37> be emitted
at this offset and SHOULD <38> be ignored. If IcbPgdEdnOIdOId is zero, fcPgdEdnOIldOIld is
undefined and MUST be ignored.

75 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d

IcbPgdEdnOIdOId (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
endnote layout cache at offset fcPgdEdNOIdOId in the Table Stream.

fcBKkdEdnOIdOId (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated endnote text flow break cache begins at this offset. Information SHOULD NOT <39> be
emitted at this offset and SHOULD <40> be ignored. If IcbBkdEdnOIdOId is zero,
fcBkdEdnOIdOId is undefined and MUST be ignored.

IcbBkdEdNOIdOId (4 bytes): An unsigned integer that specifies t he size, in bytes, of the deprecated
endnote text flow break cache at offset fcBkdEdnOIdOld in the Table Stream.

fcSttbfintlFId (4 bytes): This value is undefined and MUST be ignored.
IcbSttbfintIFld (4 bytes): This value MUST be zero, and MUST be ignored.

fcRouteSlip (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
RouteSlip _ that specifies the route slip for this document begins at this offset. This value
SHOULD<41> be ignored.

IcbRouteSlip (4 bytes): An unsigned integer that specifies the size, in bytes, of the RouteSlip at
offset fcRouteSlip inthe Table Stream.

fcSttbSavedBy (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
SttbSavedBy that specifies the save history of this document begins at this offset. This value
SHOULD<42> be ignored.

IcbSttbSavedBy (4 bytes): An unsigned integer that specifies the size, in bytes, of the
StthSavedBy at the offset fcSttbSavedBy . This value SHOULD <43> be zero.

fcSttbFnm (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An SttbFnm
that contains information about the external files that are referenced by this doc ument begins at

this offset. If IcbSttbFnm is zero, fcSttbFnm is undefined and MUST be ignored.

IcbSttbFnm (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbFnm at the
offset fcSttbFnm

fcPIfLst (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A PlfLst that
contains list formatting information begins at this offset. An array of LVL s is appended to the
PIfLst . IcbPIfLst does not account for the array of LVL s. The size of the array of LVL s is specified

by the LSTEsin PlfLst . Foreach LSTF whose fSimpleList is setto Ox1, there is one LVL inthe
array of LVL s that specifies the level formatting of the single level in the list which corresponds to

the LSTF. And, foreach LSTF whose fSimpleList is set to 0x0, there are 9 LVL s in the array of
LVL s that specify the level formatting of the respective levels in the list which corresponds to the

LSTF. This array of LVL s is in the same respective order as the LSTFsin PIfLst . If IcbPIfLst isO,
fcPIfLst is undefined and MUST be ignored.

IcbPIfLst (4 bytes): An unsign ed integer that specifies the size, in bytes, of the PIfLst at the offset
fcPIfLst . This does not include the size of the array of LVL s that are appended to the PIfLst .

fcPIfLfo (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A PlfLfo that
contains list formatting override information begins at this offset. If IcbPIfLfo is zero, fcPIfLfo is
undefined and MUST be ignored.

IcbPIfLfo (4 bytes): An unsigned integer that s pecifies the size, in bytes, of the PIfLfo at the offset
fcPIfLfo
fcPlcfTxbxBkd (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A

PlcfTxbxBkd begins at this offset and specifies which ranges of text go inside which textboxes.

IcbPIcfTxbxBkd (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcfTxbxBkd
that begins at offset fcPlcfTxbxBkd in the Table Stream.

76 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

IcbPlcfTxbxBkd MUST be zero if FibRgLW97.ccpTxbx is zero, and MUST be nonzero if
FibRgLW97.ccpTxbx is nonzero.

fcPlcfTxbxHdrBkd (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
Plc fTxbxHdrBkd begins at this offset and specifies which ranges of text are contained inside
which header textboxes.

IcbPIcfTxbxHdrBkd (4 bytes): An unsigned integer that specifies the size, in bytes, of the
PlcfTxbxHdrBkd that begins at offset ~ fcPlcfTxbxHdrB kd in the Table Stream.

IcbPIcfTxbxHdrBkd MUST be zero if FibRgLW97.ccpHdrTxbx is zero, and MUST be nonzero if
FibRgLwW97.ccpHdrTxbx is nonzero.

fcDocUndoWord9 (4 bytes): An unsigned integer that specifies an offset in the WordDocument
Stream. Version -specific undo information begins at this offset. This information SHOULD
NOT<44> be emitted and SHOULD <45> be ignored.

IcbDocUndo Word9 (4 bytes): An unsigned integer. If this is nonzero, version -specific undo
information exists at offset fcDocUndoWord9 in the WordDocument Stream.

fcRgbUse (4 bytes): An unsigned integer that specifies an offset in the WordDocument Stream.
Version -specific undo information begins at this offset. This information SHOULD NOT <46> be

emitted and SHOULD <47> be ignored.

IcbRgbU se (4 bytes): An unsigned integer that specifies the size, in bytes, of the version - specific
undo information at offset fcRgbUse in the WordDocument Stream.

fcUsp (4 bytes): An unsigned integer that specifies an offset in the WordDocument Stream. Version -
specific undo information begins at this offset. This information SHOULD NOT <48> be emitted and
SHOULD<49> be ignored.

IcbUsp (4 bytes): An unsigned integer that specifies the size, in bytes, of the version - specific undo
information at offset fcUsp in the WordDocument Stream.

fcUskf (4 bytes): An unsigned integer that specifies an offset in the Table Stream. Version - specific
undo information begins at this offset. This information SHOULD NOT <50> be emitted and
SHOULD<51> be ignored.

IcbUskf (4 byt es): Anunsigned integer that specifies the size, in bytes, of the version - specific undo
information at offset fcUskf in the Table Stream.

fcPlcupcRgbUse (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plc
begins at this offs et and contains version -specific undo information. This information SHOULD
NOT<52> be emitted and SHOULD <53> be ignored.

Icb PlcupcRgbUse (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plc at
offset fcPlcupcRgbUse in the Table Stream.

fcPlcupcUsp (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plc
begins at this offset and contains version -specific undo information. This information SHOULD
NOT<54> be emitted and SHOULD <55> be ignored.

IcbPlcupc Usp (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plc at offset
fcPlcupcUsp in the Table Stream.

fcSttbGlsyStyle (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
SttbGlsyStyle , which contains information about the style s that are used by the AutoText items
which are defined in this document, begins at this offset.

77 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

IcbStthGlsyStyle (4 bytes): An unsigned integer that specifies the size, in bytes, of the
StthGlsyStyle at offset fcSttbGlsyStyle in the Table Stream. If base.fGlsy ofthe Fib that
contains this FibRgFcLcb97 is zero, this value MUST be zero.

fcPlgosl (4 bytes): An unsign ed integer that specifies an offset in the Table Stream. A PlfGosl
begins at the offset. If IcbPlgosl is zero, fcPlgosl is undefined and MUST be ignored.

IcbPlgosl (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlfGosl at offset
fcPlgosl in the Table Stream.

fcPlcocx (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A RaxOcxInfo
that specifies information about the OLE controls in the document begins at this offset. When
there are no OLE controls in the document, fcPlcocx and IcbPlcocx MUST be zero and MUS T be
ignored. If there are any OLE controls in the document, fcPlcocx MUST point to a valid
RgxOcxInfo

IcbPlcocx (4 bytes): An unsigned integer that specifies the size, in bytes, of the RgxOcxInfo at the
offset fcPlcocx

fcPlcfBteLvc (4 bytes): An unsign ed integer that specifies an offset in the Table Stream. A
deprecated numbering field cache begins at this offset. This information SHOULD NOT <56> be

emitted and SHOULD <57> ignored. If IcbPlcfBteLvc is zero, fcPIcfBteLvc is undefined and
MUST be ignored.

IcbPIcfBteLvc (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
numbering field cache at of fset fcPlcfBteLvc in the Table Stream. This value SHOULD <58> be
zero.

dwLowDateTime (4 bytes): The low -order partofa FILETIME structure, as specified by MS -
DTYP], that specifies when the document was last saved.

dwHighDateTime (4 bytes): The high -order partofa FILETIME structure, as specified by [MS -
DTYP], that specifies when the document was last saved.

fcPlc fLvcPrel0 (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated list level cache begins at this offset. Information SHOULD NOT <59> be emitted at this

offset and SHOULD <60> be ignored. If IcbPIcfLvcPrel0 is zero, fcPlcfLvcPrel0 is undefined
and MUST be ignored.

IcbPlcfLvcPrel0 (4 bytes): An unsigned integer that specifi es the size, in bytes, of the deprecated

list level cache at offset fcPlcfLvcPrel0 in the Table Stream. This value SHOULD <61> be zero.
fcPIcfAsumy (4 bytes): An unsigned integer that specifi es an offset in the Table Stream. A

PlcfAsumy _ begins at the offset. If IcbPIcfAsumy is zero, fcPIcfAsumy is undefined and MUST

be ignored.
IcbPIcfAsumy (4 bytes): An unsigned integer that specifie s the size, in bytes, of the PlcfAsumy at

offset fcPIcfAsumy inthe Table Stream.

fcPlcfGram (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfgram
which specifie s the state of the grammar checker for each text range, begins at this offset. If
IcbPlcfGram is zero, then fcPlcfGram is undefined and MUST be ignored.

IcbPIcfGram (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfgram that
begins at offset fcPIcfGram in the Table Stream.

fcSttbListNames (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
SttbListNames __, which specifiesthe LISTNUM _ field names of the lists in the document, begins at
this offset. If IcbSttbListNames is zero, fcSttbListNames is undefined and MUST be ignored.

78 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2

IcbSttbListNames (4 bytes): An unsigned integer that specifies the size, in bytes, of the
SttbListNames at the offset fcSttbListNames

fcSttbfUssr (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated, version -specific undo information begins at this offset. This information SHOU
NOT<62> be emitted and SHOULD <63> be ignored.

IcbSttbfUssr (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated,
version -specific undo information at offset fcSttbfUssr in the Table Stream.

25.7 FibRgFcLcb2000

LD

The FibRgFcLch2000 structure is a variable -sized portion of the Fib. It extends the FibRgFcLch97 .

rgFcLch97 (744 bytes)

fcPlIcfTch

IcbPIcfTch

fcRmdThreading

IcbRmdThreading

fcMid

IcbMid

fcSttbRgtplc

IcbSttbRgtplc

fcMsoEnvelope

IcbMsoEnvelope

fcPIcfLad

IcbPIcfLad

fcRgDofr

IcbRgDofr

fcPlcosl

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

79 | 576

IcbPIcosl

fcPIcfCookieOld

IcbPIcfCookieOld

fcPgdMotherOld

IcbPgdMotherOld

fcBkdMotherOld

IcbBkdMotherOld

fcPgdFtnOld

lcbPgdFtnOId

fcBkdFtnOIld

IcbBkdFtnOld

fcPgdEdnOId

IcbPgdEdnOld

fcBkdEdnOld

IcbBkdEdnOId

rgFcLcb97 (744 bytes): The contained FibRgFcLcb97

fcPlcfTch (4 bytes): An unsigned integer that specifies an offset in the Table Stream . A PlcfTch
begins at this offset and specifies a cache of table characters. Information at this offset
SHOULD<64> be ignored. If IcbPIlcfTch is zero, fcPlcfTch is undefined and MUST be ignored.

IcbPIcfTch (4 bytes): An unsigned integer that specifies the size, in bytes, of the PlcfTch at offset
fcPlcfTch

fcRmdThreading (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
RmdThreading that specifies the data concerning the e -mail messages and their authors in this

document begins at this offset.

IcbRmdThreading (4 bytes): An unsigned integer that specifies the size, in bytes, of the
RmdThreading at the offset fcRmdThreading . This value MUST NOT be zero.

fcMid (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A double -byte
character Unicod e string that specifies the message identifier of the document begins at this

offset. This value MUST be ignored.

IcbMid (4 bytes): An unsigned integer that specifies the size, in bytes, of the double -byte character
Unicode string at offset ~ fcMid . This value MUST be ignored.

80 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcSttbRgtplc (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
SttbRatplc that speci fies the styles of lists in the document begins at this offset. If IcbSttbRgtplc
is zero, fcSttbRgtplc is undefined and MUST be ignored.

IcbSttbRgtplc (4 bytes): An unsigned integer that specifies the size, in bytes, of the SttbRgtplc at
the offset fcSttbR gtplc .

fcMsoEnvelope (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
MsoEnvelopeCLSID , Which specifies the envelope data as specified by MS - OSHARED] section
2.3.8.1, begins at this offset. If IcbMsoEnvelope is zero, fcMsoEnvelope is undefined and MUST
be ignored.

IcbMsoEnvelope (4 bytes): An unsigned integer that specifies the size, in bytes, of the

MsoEnvelopeCLSID at the offset fcMsoEnvelope

fcPIcfLad (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Picflad
begins at this offset and specifies the language auto -detect state of each text range. If IcbPIcfLad
is zero, fcPIcfLad is undefined and MUST be ignored.

IcbPlIcfLad (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcflad that
begins at offset fcPIcfLad in the Table Stream.

fcRgDofr (4 bytes): An unsigned integer thats pecifies an offset in the Table Stream. A variable -
length array with elements of type Dofrh _ begins at that offset. The elements of this array are
records that support the frame set and list style features. If IcbRgDofr is zero, fcRgDofr is

undefined and MUST be ignored.

IcbRgDofr (4 bytes): An unsigned integer that specifies the size, in bytes, of the array that begins
at offset fcRgDofr inthe Table Stream.

fcPlcosl (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A PliCos| _begins
at the offset. If IcbPIcosl is zero, fcPlcosl is undefined and MUST be ignored.

IcbPlIcosl (4 bytes): An unsigned integer that specifies the size, in bytes, of the PIfCosl at offset
fcPIcosl in the Table Stream.

fcPlcfCookieOld (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlcfcookieOld begins at this offset. If IcbPIcfcookieOld is zero, fcPlcfcookieOld is undefined
and MUST be ignored. fcPlIcfcookieOld MAY<65> be ignored.

IcbPIcfCookieOld (4 bytes): An unsigned integer that specifies the size, in bytes, of the
PlcfcookieOld at offset fcPIcfcookieOld in the Table Stream.

fcPgdMotherOld (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated document page layout cache begins at this offset. Information SHOULD NOT <66>_pe

emitted at this offset and SHOULD 6> he ignored. If IcbPgdMotherOld is zero, fcPgdMotherOld
is undefined and MUST be ignored.

IcbPgdMotherOld (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
document page layout cache at offset fcPgdMotherOld in the Table Stream.

fcBkdMotherOld (4 bytes) : An unsigned integer that specifies an offset in the Table Stream. The
deprecated document text flow break cache begins at this offset. Information SHOULD NOT <68>_ pe
emitted at this offset and SHOULD =% pe ignored. If IcbBkdMotherOld is zero, fcBkdMotherOld
is undefined and MUST be ignored.

IcbBkdMotherOld (4 bytes): An unsigned integer that specifies the size, in bytes, of t he deprecated
document text flow break cache at offset fcBkdMotherOld in the Table Stream.
fcPgdFtnOId (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated footnote layout cache begins at this offset. Information SHOU LD NOT == pe emitted at
81 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

%5bMS-OSHARED%5d.pdf#Section_d93502fa5b8f4f47a3fe5574046f4b8d

this offset and SHOULD <'> be ignored. If IcbPgdFtnOld is zero, fcPgdFtnOld is undefined and
MUST b e ignored.

IcbPgdFtnOld (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
footnote layout cache at offset fcPgdFtnOId in the Table Stream.

fcBkdFtnOld (4 bytes): An unsigned integer that specifies an offset in the Table S tream. The
deprecated footnote text flow break cache begins at this offset. Information SHOULD NOT <122 pe
emitted at this offset and SHOULD <73>_peignored. If IcbBkdFtnOld is zero, fcBkdFtnOld is
undefined and MUST be ignored.

IcbBkdFtnOId (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
footnote text flow break cache at offset fcBkdFtnOId in the Table Stream.

fcPgdEdnOId (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated endnote layout cache begins at this offset. Information SHOULD NOT <74> he emitted at
this offset and SHOULD =52 be ignored. If IcbPgdEdnOId is zero, fcPgdEdnOld s undefined and
MUST be ignored.

IcbPgdEdnOId (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
endnote layout cache at offset fcPgdEdNnOId in the Table Stream.

fcBkdEdNOIld (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated endnote text flow break cache begins at this offset. Information SHOULD NOT <7®> pe
emitted at this offset and SHOULD <> pe ignored. If IcbBkdEdnOld is zero, fcBkdEdnOIld s
unde fined and MUST be ignored.

IcbhBkdEdNnOId (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
endnote text flow break cache at offset fcBKkdEdnOId in the Table Stream.

25.8 FibRgFcLcb2002

The FibRgFcLcb2002 structure is a variable -sized portion of the Fib. It extends the FibRgFcLcb2000 .

rgFcLcb2000 (864 bytes)

fcUnusedl

IcbUnused1

fcPIcfPgp

IcbPIcfPgp

fcPlcfuim

IcbPlIcfuim

82 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcPIfguidUim

IcbPIfguidUim

fcAtrdExtra

IcbAtrdExtra

fcPIrsid

IcbPIrsid

fcSttbfBkmkFactoid

IcbSttbfBkmkFactoid

fcPIcfBkfFactoid

IcbPIcfBkfFactoid

fcPlcfcookie

IcbPIcfcookie

fcPlcfBkIFactoid

IcbPIcfBkIFactoid

fcFactoidData

IcbFactoidData

fcDocUndo

IcbDocUndo

fcSttbfBkmkFcc

IcbSttbfBkmkFcc

fcPIcfBkfFcc

IcbPlIcfBkfFcc

fcPIcfBkIFcc

IcbPIcfBkIFcc

fcSttbfbkmkBPRepairs

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

83 / 576

IcbSttbfbkmkBPRepairs

fcPlcfbkfBPRepairs

IcbPIcfbkfBPRepairs

fcPlcfbkIBPRepairs

IcbPlIcfbkIBPRepairs

fcPmsNew

IcbPmsNew

fcODSO

IcbODSO

fcPlcfpmiOldXP

IcbPIcfpmiOldXP

fcPlcfpmiNewXP

IcbPlcfpmiNewXP

fcPlcfpmiMixedXP

IcbPlcfpmiMixedXP

fcUnused2

IcbUnused2

fcPIcffactoid

IcbPIcffactoid

fcPlcflvcOldXP

IcbPIcflvcOldXP

fcPIcflveNewXP

IcbPIcflvcNewXP

fcPIcflveMixedXP

IcbPIcflvcMixedXP

84 | 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

rgFcLcb2000 (864 bytes): The contained FibRgFcLcb2000

fcUnusedl (4 bytes): This value is undefined and MUST be ignored.

IcbUnused1 (4 bytes): This value MUST be zero, and MUST be ignored

fcPIcfPgp (4 bytes): An unsigned integer that specifies an offset inthe Table Stream . A PGPArray
begins at this offset. If IcbPIcfPgp is 0, fcPlcfPgp is undefined and MUST be ignored.

IcbPIcfPgp (4 byt es): An unsigned integer that specifies the size, in bytes, of the PGPArray thatis
stored at offset fcPIcfPgp

fcPlcfuim (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfuim
begins at this offset. If IcbPIcfuim is zero, fcPlcfuim is undefined and MUST be ignored.

IcbPIcfuim (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfuim at offset
fcPlcfuim

fcPIfguidUim (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
PlfguidUim __ begins at this offset. If IcbPIfguidUim is zero, fcPlfguidUim is undefined and MUST
be ignored.

IcbPIfguidUim (4 byte s): An unsigned integer that specifies the size, in bytes, of the PlfguidUim at
offset fcPIfguidUim.

fcAtrdExtra (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
Atr dExtra _ begins at this offset. If IcbAtrdExtra is zero, fcAtrdExtra is undefined and MUST be
ignored.

IcbAtrdExtra (4 bytes): An unsigned integer that specifies the size, in bytes, of the AtrdExtra at
offset fcAtrdExtra inthe Table Stream.

fcPIrsid (4 byte s): Anunsigned integer that specifies an offset in the Table Stream. A PLRSID
begins at this offset. If IcbPIrsid is zero, fcPlrsid is undefined and MUST be ignored.

IcbPIrsid (4 bytes): An uns igned integer that specifies the size, in bytes, of the PLRSID at offset
fcPIrsid in the Table Stream.

fcSttbfBkmkFactoid (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
SttbfBkmkFactoid containing information about smart tag bookmarks in the document begins
at this offset. If IcbSttbfBkmkFactoid is zero, fcSttbfBkmkFactoid is undefined and MUST be
ignored .
The SttbfBkmkFactoid is parallel to the Plcfbkfd at offset fcPIcfBkfFactoid in the Table
Stream. Each element in the SttbfBkmkFactoid specifies information about the bookmark that
is associated with the data element which is located at the same offset in that Plcfbkfd . For this
reason, the SttbfBkmkFactoid that begins at offset fcSttbfBkmkFactoid ,and the Plcfbkfd that
begins at offset fcPIcfBkfFactoid , MUST contain the same number of elements.

IcbSttbfBkmkFactoid (4 bytes): An unsigned integer that specifies the size, in bytes, of the

SttbfBkmkFactoid at offset fcSttbfBkmkFactoid

fcPIcfBkfFactoid (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
Plcfbkfd that contains information about the smart tag bookmarks in the document begins at this
offset. If IcbPIcfBkfFactoid is zero, fcPIcfBkfFactoid is undefined and MUST be ignored.

Each data elementinthe Plcfbkfd is associated, ina one -to-one correlation, with a data element
in the Plcfbkld at offset fcPlcfBklFactoid . For this reason, the Plcfbkfd that begins at offset
fcPIcfB kfFactoid , andthe Plcfbkld that begins at offset fcPIcfBkIFactoid , MUST contain the
same number of data elements. The Plcfbkfd is parallel to the SttbfBkmkFactoid at offset
fcSttbfBkmkFactoid in the Table Stream. Each data element in the Plcfbkfd specifie s

85 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

information about the bookmark that is associated with the element which is located at the same

offsetinthat StthfBkmkFactoid . For this reason, the Plcfbkfd that begins at offset

fcPlcfBkfFactoid , and the SttbfBkmkFactoid that begins at offset fcSttbfB kmkFactoid , MUST
contain the same number of elements.

IcbPIcfBkfFactoid (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkfd at
offset fcPIcfBkfFactoid

fcPlcfcookie (4 bytes): An unsigned integer that specifies an offset in t he Table Stream. A
Plcfcookie begins at this offset. If IcbPIcfcookie is zero, fcPlcfcookie is undefined and MUST be
ignored. fcPlcfcookie MAY<78> be ignored.

IcbPIcfcookie (4 bytes): An unsigned integer that specifies the size, in bytes, of the Picfcookie at
offset fcPlcfcookie in the Table Stream.

fcPIcfBkIFactoid (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
Plcfbkld that contains information about the smart tag bookmarks in the document begins at this
offset. If IcbPIcfBkIFactoid is zero, fcPlcfBklFactoid is undefined and MUST be ignored.

Each data element in the Plcfbkld is associated, in aone -to-one correlation, with a data element
inthe Plcfbkfd at offset fcPlcfBkfFactoid . For this reason, the Plcfbkld that begins at offset
fcPlcfBkIFactoid ,and the Plcfbkfd that begins at offset fcPlcfBkfFactoid , MUST contain the
same number of data elements.

IcbPIcfBkIFactoid (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkld at
offset fcPIcfBklFactoid

fcFactoidData (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
SmartTagData begins at this offset and specifies information about the smart tag recognizers
that are used in this document. If IcbFactoidData is zero, fcFactoidData is undefined and MUST
be ignored.

IcbFactoidData (4 bytes): An unsigned integer that specifies the size, in bytes, of the SmartTagData
at offset fcFactoidData in the Table Stream.

fcDocUndo (4 bytes): An unsigned integer that specifies an offset in the WordDocument Stream
Version -specific undo information begins at this offset. This information SHOULD NOT <79> be

emitted and SHOULD <80> be ignored.

IcbDocUndo (4 bytes): An unsigned integer. If this value is nonzero, version - specific undo
information exists at offset fcDocUndo in the WordDocument Stream.

fcSttbfBkmkFcc (4 b ytes): An unsigned integer that specifies an offset in the Table Stream. An
SttbfBkmkFcc that contains information about the format co nsistency -checker bookmark sin
the document begins at this offset. If IcbSttbfBkmkFcc is zero, fcSttbfBkmkFcc is undefined
and MUST be ignored.

The SttbfBkmkFcc is parallel to the Plcfbkfd at offset fcPIcfBkfFcc in the Table Stream. Each
elementinthe SttbfBkmkFcc specifies information about the bookmark that is associated with

the data element which is located at the same offset in that Plcfbkfd . For this reason, the
SttbfBkmkFcc that begins at offset fcSttbfBkmkFcc ,and the Plcfbkfd that begins at off set
fcPIcfBkfFcc , MUST contain the same number of elements.

IcbSttbfBkmkFcc (4 bytes): An unsigned integer that specifies the size, in bytes, of the
SttbfBkmkFcc at offset fcSttbfBkmkFcc

fcPlcfBkfFcc (4 bytes): An unsigned integer that specifies an offse tin the Table Stream. A Plcfbkfd
that contains information about format consistency -checker bookmarks in the document begins at

this offset. If IcbPlcfBkfFcc is zero, fcPlcfBkfFcc is undefined and MUST be ignored.

86 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

Each data element in the Plcfbkfd is ass ociated, in a one -to-one correlation, with a data element
inthe Plcfbkld atoffset fcPIcfBkIFcc . For this reason, the Plcfbkfd that begins at offset
fcPIcfBkfFcc and the Plcfokld that begins at offset fcPIcfBkIFcc ~ MUST contain the same number
of data elem ents. The Plcfbkfd is parallel tothe SttbfBkmkFcc at offset fcSttbfBkmkFcc in the
Table Stream. Each data element in the Plcfbkfd specifies information about the bookmark that is
associated with the element which is located at the same offset in that Sttb fBkmkFcc . For this
reason, the Plcfbkfd that begins at offset fcPIcfBkfFcc and the StthfBkmkFcc that begins at
offset fcSttbfBkmkFcc MUST contain the same number of elements.

IcbPIcfBkfFcc (4 bytes): An unsigned integer that specifies the size, in bytes, o fthe Plcfbkfd at
offset fcPlcfBkfFcc

fcPIcfBkIFcc (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcfbkid
that contains information about the format consistency -checker bookmarks in the document
begins at this offset. If IcbPIcfBkIFcc is zero, fcPIcfBklIFcc s undefined and MUST be ignored.

Each data element in the Plcfbkld is associated, in aone -to-one correlation, with a data element
inthe Plcfbkfd at offset fcPIcfBkfFcc . For this reason, the Plcfbkld that begins at offset
fcPIcfBklFcc , and the Plcfbkfd that begins at offset ~ fcPlcfBkfFcc , MUST contain the same
number of data elements.

IcbPIcfBkIFcc (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkld at
offset fcPIcfBkIFcc

fcSttbfbkmkBPRepairs (4 bytes): An unsigned integer that specifies an offset in the Table Stream.
An SttbfBkmkBPRepairs that contains information about the repair bookmarks in the
document begins at this offset. If IcbSttbfBkmkBPRepairs is zero, fcSttbfBkmkBPRepairs is
undefined and MUST be ignored.
The SttbfBkmkBPRepairs is parallel to the Plcfbkf at offset fcPIcfBkfBPRepairs in the Table
Stream. Each element in the SttbfBkmkBPRepairs specifies information about the bookmark
that is associated with the data element which is located at the same offset in that Plcfbkf . For
this reason, the SttbfBkmkBPRepairs that begins at offset fcSttbfBkmkBPRepairs , and the
Plcfbkf that begins at offset fcPIcfBkiBPRepairs , MUST contain the same number of elements.

IcbSttbfbkmkBPRepairs (4 bytes): An unsigned integer that specifies the size, i n bytes, of the
SttbfBkmkBPRepairs at offset fcSttbfBkmkBPRepairs

fcPlcfbkfBPRepairs (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
Plcfbkf that contains information about the repair bookmarks in the document begins at thi s
offset. If IcbPIcfBkfBPRepairs is zero, fcPIcfBkiBPRepairs is undefined and MUST be ignored.

Each data element in the Plcfbkf is associated, in a one -to-one correlation, with a data element in
the Plcfbkl at offset fcPIcfBkIBPRepairs . For this reason, the Plcfbkf that begins at offset
fcPIcfBkfBPRepairs ,and the Plcfbkl that begins at offset fcPIcfBkIBPRepairs , MUST contain

the same number of data elements. The Plcfbkf is parallel to the SttbfBk mkBPRepairs at offset
fcSttbfBkmkBPRepairs in the Table Stream. Each data element in the Plcfbkf specifies
information about the bookmark that is associated with the element which is located at the same
offsetinthat SttbfBkmkBPRepairs . For this reason, the Plcfbkf that begins at offset
fcPlcfbkfBPRepairs , and the SttbfBkmkBPRepairs that begins at offset
fcSttbfBkmkBPRepairs , MUST contain the same number of elements.
The CPsin this Plcfbkf MUST NOT exceed the CP that represents the end of the Main Document
part .

IcbPIcfbkfBPRepairs (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkf

at off set fcPlcfbkfBPRepairs

87 /| 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcPlcfbkIBPRepairs (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
Plcfbkl that contains information about the repair bookmarks in the document begins at this
offset. If IcbPIcfBKIBPRepairs is zero, fcPIcfBkIBPRepairs is undefined and MUST be ignored.

Each data element in the Plcfbkl is associated, in aone -to-one correlation, with a data element in
the Plcfbkf at offset fcPIcfBkfBPRepairs . For this reason, the Plcfbkl that begins at offset
fcPIcfBKIBP Repairs , and the Plcfbkf that begins at offset fcPIcfBkfBPRepairs , MUST contain
the same number of data elements.

The CPs that are contained in this Plcfbkl MUST NOT exceed the CP that represents the end of the
Main Document part.

IcbPIcfbkIBPRepairs (4 b ytes): An unsigned integer that specifies the size, in bytes, of the Plcfbkl
at offset fcPIcfBkIBPRepairs

fcPmsNew (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A new Pms ,
which contains the current state of a print merge operation, begins at this offset. If IcbPmsNew

is zero, fcPmsNew is undefined and MUST be ignored.

IcbPmsNew (4 bytes): An unsigned integer which specifies the size, in bytes, of the Pms at offset
fcPmsNew

fcODSO (4 bytes): An unsigned integer that specifies an offset in the Table Stream. Office Data
Source Object (ODSO) data that is used to perform mail merge begins at this offset. The data is
stored in an array of ODSOPropertyBase items. The ODSOPropertyBase items are of variable
size and are stored contiguously. The complete set of properties that are contained in the array is

determined by reading each ODSOPropertyBase , until a total of IcbODSO bytes of data are
read. If 1cbODSO is zero, fcODSO is undefined and MUST be ignored.

IcbODSO (4 bytes): An unsigned integer that specifies the size, in bytes, of the Offi ce Data Source
Object data at offset ~ fcODSO in the Table Stream.

fcPlcfpmiOIdXP (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated paragraph mark information cache begins at this offset. Information SHOULD
NOT<81> be emitted at this offset and SHOULD <82> be ignored. If IcbPlcfpmiOldXP is zero,
fcPlcfpmiOldXP is undefined and MUST be igno red.

IcbPlcfpmiOIldXP (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
paragraph mark information cache at offset fcPlcfpmiOldXP in the Table Stream. This value
SHOULD<83> be zero.

fcPlcfpmiNewXP (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated paragraph mark information cache begins at this offset. Information SHOULD
NOT<84> be emitted at this offset and SHOULD <85> be ignored. If IcbPlcfpmiNewXP is zero,
fcPlcfpmiNewXP is undefined and MUST be ignored.

IcbPlcfpmiNewXP (4 bytes): An unsig ned integer that specifies the size, in bytes, of the deprecated
paragraph mark information cache at offset fcPlcfpmiNewXP in the Table Stream. This value
SHOULD<86> _ be zero.

fcPlcfpmiMixedX P (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated paragraph mark information cache begins at this offset. Information SHOULD
NOT<87> be emitted at this offset and SHOULD <88> be ignored. If IcbPlcfpmiMixedXP is zero,
fcPlcfpmiMixedXP is undefined and MUST be ignored.

IcbPIcfpmiMixedXP (4 bytes): An unsigned integer that specifies the size, in bytes, of the
deprecated paragraph mark information cache at offset fcPIcfpmiMixedXP in the Table Stream.
This value SHOULD <89> be zero.

fcUnu sed?2 (4 bytes): This value is undefined and MUST be ignored.

88 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

IcbUnused?2 (4 bytes): This value MUST be zero, and MUST be ignored.

fcPlcffactoid (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A
Plcffactoid , which specifies the smart tag recognizer state of each text range, begins at this
offset. If IcbPIcffactoid is zero, fcPlcffactoid is undefined and MUST be ignored.

IcbPIcffactoid (4 bytes): An unsigned integer that specifies the size, in bytes of the Plcffactoid
that begins at offset fcPlIcffactoid in the Table Stream.
fcPlcflvcOIdXP (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated listnum field cache begins at this offset. | nformation SHOULD NOT <90> be emitted at

this offset and SHOULD <91> beignored. If IcbPIcflvcOldXP is zero, fcPlcflvcOldXP is undefined
and MUST be ignored.

IcbPIcflvcOIdXP (4 bytes): An unsigned integer that specifies the size, in bytes, of the deprecated
listhum field cache at offset fcPlcflvcOldXP in the Table Stream. This value SHOULD <92> be
zero.

fcPlcflveNewXP (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated listhum field cache begins at this offset. Information SHOULD NOT <93> be emitted at

this offset and SHOULD <94> be ignored. If IcbPlcflvcNewXP is zero, fcPlcflveNewXP is
undefined and MUST be ignored.

IcbPIcflveNewXP (4 bytes): An unsi gned integer that specifies the size, in bytes, of the deprecated
listhnum field cache at offset fcPlcflvcNewXP in the Table Stream. This value SHOULD <95> he
zero.

fcPlcflveMixedXP (4 bytes): An unsigned integer that specifies an offset in the Table Stream. The
deprecated listhum field cache begins at this offset. Information SHOULD NOT <96> be emitted at
this offset and SHOULD <97> be ignored. If IcbPIcflvcMixedXP is zero, fcPlcflveMixedXP is
undefined and MUST be ignored.

IcbPIcflveMixedXP (4 bytes): An unsigned integer that specifies the size, in bytes, of the

deprecated listhum field cache at offset fcPlcflveMixedXP in the Table Stream. This value
SHOULD<98> be zero.

259 FibRgFcLcb2003

The FibRgFcLcb2003 structure is a variable -sized portion of the Fib. It extendsthe FibRgFcLcbh2002 .

rgFcLcb2002 (1088 bytes)

fcHplxsdr

IcbHplxsdr

fcSttbfBkmkSdt

IcbSttbfBkmkSdt

89 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcPlcfBkfSdt

IcbPIcfBkfSdt

fcPlcfBkISdt

IcbPIcfBKkISdt

fcCustomXForm

IcbCustomXForm

fcSttbfBkmkProt

IcbSttbfBkmkProt

fcPIcfBkfProt

IcbPIcfBkfProt

fcPlcfBklIProt

IcbPIcfBkIProt

fcSttbProtUser

IcbSttbProtUser

fcUnused

IcbUnused

fcPlcfpmiOld

IcbPlcfpmiOld

fcPlcfpmiOldinline

IcbPlcfpmiOldinline

fcPlcfpmiNew

IcbPlcfpmiNew

fcPlcfpmiNewlnline

IcbPIcfpmiNewlnline

fcPlIcflveOld

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

90 / 576

IcbPIcflveOld

fcPIcflvcOldinline

IcbPIcflveOldInline

fcPlcflveNew

IcbPIcflveNew

fcPlcflveNewlnline

IcbPIcflveNewlnline

fcPgdMother

IcbPgdMother

fcBkdMother

IcbBkdMother

fcAfdMother

IcbAfdMother

fcPgdFtn

IcbPgdFtn

fcBkdFtn

IcbBkdFtn

fcAfdFtn

IcbAfdFtn

fcPgdEdn

IcbPgdEdn

fcBkdEdn

IcbBkdEdn

fcAfdEdn

IcbAfdEdn

91 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

fcAfd

IcbAfd

rgFcLcb2002 (1088 bytes): The contained FibRgFcLcb2002

fcHplxsdr (4 bytes): An unsigned integer that specifies an offset in the Table Stream . An Hplxsdr
structure begins at this offset. This structure specifies information about XML schema definition
(XSD) references.

IcbHplxsdr (4 bytes): An unsigned integer that specifies the size, in bytes, of the Hplxsdr structure
at the offset fcHplxsdr in the Table Stream. If IcbHplIxsdr is zero, then fcHplxsdr is undefined
and MUST be ignored.

fcSttbfBkmkSdt (4 bytes): An unsigned integer that specifies an offset in the Table Stream. An
SttbfBkmkSdt that contains information about the structured document tag bookmarks in
the document begins at this offset. If IcbSttbfBkmkSdt is zero, then fcSttbfBkmkSdt is
undefined and MUST be ignored.

The SttbfBkmkSdt is parallel to the Plcbkfd at offset fcPIcfBkfSdt in the Table Stream. Each
elementinthe SttbfBkmkSdt specifies information about the bookmark that is associated with
the data element which is located at the same offset in that Plcbkfd . For this reason, the
SttbfBkmkSdt that begins at offset fcSttbfBkmkSdt ,and the Plcbkfd that begins at offset
fcPlcfBkfSdt , MUST contain the same number of elements.

IcbSttbfBkmkSdt (4 bytes): An unsigned integer that specifies the size, in bytes, of the
SttbfBkmkSdt at offset fcSttbfBkmkSdt

fcPlcfBkfSdt (4 bytes): An unsigned integer that specifies a n offset in the Table Stream. A Plcbkfd
that contains information about the structured document tag bookmarks in the document begins
at this offset. If IcbPIcfBkfSdt is zero, fcPlcfBkfSdt is undefined and MUST be ignored.

Each data element in the Plcbkfd is associated, in a one -to-one correlation, with a data element
inthe Plcbkld at offset fcPlcfBklSdt . For this reason, the Plcbkfd that begins at offset
fcPIcfBkfSdt , and the Plcbkld that begins at offset fcPIcfBkiSdt , MUST contain the same
number of data elements. The Plcbkfd is parallel to the SttbfBkmkSdt at offset
fcSttbfBkmkSdt in the Table Stream. Each data element in the Plcbkfd specifies information
about the bookmark that is associated wi th the element which is located at the same offset in that
StthfBkmkSdt . For this reason, the Plcbkfd that begins at offset fcPIcfBkfSdt |, and the
SttbfBkmkSdt that begins at offset fcSttbfBkmkSdt , MUST contain the same number of

elements.

IcbPIcfBkfSdt (4 bytes): An unsigned integer that specifies the size, in bytes, of the Plcbkfd at
offset fcPIlcfBkfSdt

fcPlcfBkISdt (4 bytes): An unsigned integer that specifies an offset in the Table Stream. A Plcbkid
that contains information about the structured document tag bookmarks in the document begins

at this offset. If IcbPlcfBklSdt is zero, fcPlcfBkISdt is undefined and MUST be ignored.

Each data element in the Plcbkld is associated, in a one -to-one correlation, with a data element
inthe Plcbk fd at offset fcPlcfBkfSdt . For this reason, the Plcbkld that begins at offset
fcPIcfBkiISdt , and the Plcbkfd that begins at offset fcPlcfBkfSdt ~ MUST contain the same number
of data elements.

IcbPIcfBkISdt (4 bytes): An unsigned integer that specifies the si ze, in bytes, of the Plcbkld at
offset fcPlcfBkISdt

92 / 576

[MS-DOC] - v20211116

Word (.doc) Binary File Format
Copyright © 2021 Microsoft Corporation
Release: November 16, 2021

