
1 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

[MS -CUSTOMUI]:

Custom UI XML Markup Specification

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation (ñthis
documentationò) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter -protocol relationships and interactions.

Á Copyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies

that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the

implementation. You can also distribute in your i mplementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.

Á No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.
Á Patents . Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
thi s documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promis e or the Microsoft Community Promise . If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Communi ty Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com .

Á License Programs . To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map .

Á Trademarks . The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notic e does not grant any

licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks .

Á Fictitious Names . The example companies, organizations, products, domain names, e mail
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferr ed.

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require t he use of Microsoft programming

tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documen ts are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar
with the aforementioned material or has immediate access to it.

Support. For questio ns and support, please contact dochelp@microsoft.com .

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Revision Summary

Date
Revision
History

Revision
Class Comments

1/15/2009 1.0 Major Initial Availability

7/13/2009 1.01 Major Revised and edited the technical content

8/28/2009 1.02 Editorial Revised and edited the technical content

11/6/2009 1.03 Editorial Revised and edited the technical content

2/19/2010 2.0 Editorial Revised and edited the technical content

3/31/2010 2.01 Editorial Revised and edited the technical content

4/30/2010 2.02 Editorial Revised and edited the technical content

6/7/2010 2.03 Editorial Revised and edited the technical content

6/29/2010 2.04 Editorial Changed language and formatting in the technical content.

7/23/2010 2.04 None
No changes to the meaning, language, or formatting of the
technical content.

9/27/2010 2.04 None
No changes to the meaning, language, or formatting of the
technical content.

11/15/2010 2.04 None
No changes to the meaning, language, or formatting of the
technical content.

12/17/2010 2.04 None
No changes to the meaning, language, or formatting of the
technical content.

3/18/2011 2.04 None
No changes to the meaning, language, or formatting of the
technical content.

6/10/2011 2.04 None
No changes to the meaning, language, or formatting of the
technical content.

1/20/2012 2.5 Minor Clarified the meaning of the technical content.

4/11/2012 2.5 None
No changes to the meaning, language, or formatting of the
technical content.

7/16/2012 2.5 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2012 2.5 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2013 2.5 None
No changes to the meaning, language, or formatting of the
technical content.

7/30/2013 2.5 None
No changes to the meaning, language, or formatting of the
tech nical content.

11/18/2013 2.5 None
No changes to the meaning, language, or formatting of the
technical content.

2/10/2014 2.5 None
No changes to the meaning, language, or formatting of the
technical content.

4/30/2014 2.5 None No changes to the meaning, language, or formatting of the

3 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Date
Revision
History

Revision
Class Comments

technical content.

7/31/2014 2.6 Minor Clarified the meaning of the technical content.

10/30/2014 3.0 Major Significantly changed the technical content.

3/16/2015 4.0 Major Significantly changed the technical content.

9/4/2015 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/15/2016 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/14/2016 4.0 Non e
No changes to the meaning, language, or formatting of the
technical content.

10/17/2016 4.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/10/2017 5.0 Major Significantly changed the technical content.

9/19/2017 6.0 Major Significantly changed the technical content.

4/27/2018 7.0 Major Significantly changed the technical content.

8/28/2018 8.0 Major Significantly changed the technical content.

4 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Table of Contents

1 Introduction 6
1.1 Glossary 6
1.2 References 6

1.2.1 Normative References 7
1.2.2 Informative References 7

2 Custom UI 8
2.1 Parts 8

2.1.1 Quick Access Toolbar Customizations Part 8
2.1.2 Ribbon Extensibility Part 9

2.2 Elements 10
2.2.1 box (Box Grouping Container) 10
2.2.2 button (Button) 14
2.2.3 button (Unsized Button) 24
2.2.4 button (Button Inside of a Split Button) 33
2.2.5 buttonGroup (Button Grouping Container) 41
2.2.6 checkBox (Check Box) 45
2.2.7 comboBox (Combo Box) 54
2.2.8 command (Repurposed Command) 66
2.2.9 commands (List of Repurposed Commands) 67
2.2.10 contextualTabs (List of Contextual Tab Sets) 68
2.2.11 control (Unsized Control Clone) 68
2.2.12 control (Control Clone) 76
2.2.13 control (Quick Access Toolbar Control Clone) 86
2.2.14 customUI (Custom UI Document Root) 95
2.2.15 dialogBoxLauncher (Dialog Box Launcher) 95
2.2.16 documentControls (List of Document -Specific Quick Access Toolbar Controls) 96
2.2.17 dropDown (Drop -down Control) 97
2.2.18 dynamicMenu (Unsized Dynamic Menu) 109
2.2.19 dyna micMenu (Dynamic Menu) 118
2.2.20 editBox (Edit Box) 129
2.2.21 gallery (Gallery) 138
2.2.22 gallery (Unsized Gallery) 154
2.2.23 group (Group) 168
2.2.24 item (Selection Item) 176
2.2.25 labelControl (Text Label) 178
2.2.26 menu (Unsized Menu) 187
2.2.27 menu (Menu with Title) 196
2.2.28 menu (Menu) 206
2.2.29 menu (Dynamic Menu Root XML Element) 217
2.2.30 menuSeparator (Menu Separator) 219
2.2.31 officeMenu (Office Menu) 222
2.2.32 qat (Quick Acc ess Toolbar) 223
2.2.33 ribbon (Ribbon) 224
2.2.34 separator (Separator) 225
2.2.35 sharedControls (List of Shared Quick Access Toolbar Controls) 228
2.2.36 splitButton (Unsized Split Button) 229
2.2.37 splitButton (Split Button with Title) 237
2.2.38 splitButton (Split Button) 246
2.2.39 tab (Tab) 255
2.2.40 tabs (List of Tabs) 259
2.2.41 tabSet (Contextual Tab Set) 260
2.2.42 toggleButton (Unsized Toggle Button) 261
2.2.43 toggleButton (Toggle Button) 270
2.2.44 toggleButton (Toggle Button Inside of a Split Button) 280

5 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

2.3 Simple Types 289
2.3.1 ST_BoxStyle (Box Style) 289
2.3.2 ST_Delegate (Call back Function Name) 290
2.3.3 ST_GalleryItemWidthHeight (Gallery Item Width or Height) 292
2.3.4 ST_GalleryRowColumnCount (Gallery Row or Column Count) 293
2.3.5 ST_ID (Control ID) 293
2.3.6 ST_ItemSize (Menu Item Size) 294
2.3.7 ST_Keytip (Ke ytip) 295
2.3.8 ST_LongString (Long String) 295
2.3.9 ST_QID (Qualified Control ID) 296
2.3.10 ST_Size (C ontrol Size) 298
2.3.11 ST_String (Short String) 298
2.3.12 ST_StringLength (String Length) 299
2.3.13 ST_UniqueID (Custom Control ID) 300
2.3.14 ST_Uri (Image Relationship ID) 300

3 Appendix A: Custom UI Control ID Tables 302
3.1 idMso Tables 302

3.1.1 Word 2007 302
3.1.2 Excel 2007 356
3.1.3 PowerPoint 2007 391

3.2 imageMso Table 417

4 Appendix B: Full XML Schemas 520
4.1 http://schemas.microsoft.com/office/2006/01/customui Schema 520

5 Appendix C: Product Behavior 553

6 Change Tracking 554

7 Index 555

6 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

1 Introduction

In creating an interoperable implementation, it is helpful to understand specific implementation
choices made by other products implementing the same standard. For example, portions of the
standard may provide only general guidance, leaving specific implementation choices up to the
application implementer; in some circumstances it may be helpful for other implementers to
understand those choices.

The information contained in this document provides information about how to implement UI
customization in the context of ECMA -376 Office Open XML File Formats, as described in [ECMA -376] .

1.1 Glossary

This document uses the following terms:

add - in : Supplemental functionality that is provided by an external application or macro to extend
the capabilities of an application.

KeyTip : A small, pop -up window that appears over commands on the ribbon when users press the
ALT key. By pressing the key that is displayed in a KeyTip, users can execute the command that
is associated with the KeyTip.

macro : A set of instructions that are recorded or written, and then typically saved to a file. When a

macro is run, all of the instructions are performed automatically.

XML fragment : Lines of text that adhere to XML tag rules, as described in [XML] , but do not have
a Document Type Def inition (DTD) or schema, processing instructions, or any other header
information.

XML namespace : A collection of names that is used to identify elements, types, and attributes in
XML documents identified in a URI reference [RFC3986] . A combination of XML namespace and
local name allows XML documents to use elements, types, and attributes that have the same

names but come from different sources. For more information, see [XMLNS -2ED] .

XML namespace prefix : An abbreviated form of an XML namespace , as described in [XML].

XML schema : A description of a type of XML document that is typically expressed in terms of
constraints on the structure and content of documents of that type, in addition to the basic
syntax constraints that are imposed by XML itself. An XML schema provides a view of a
document type at a relatively high le vel of abstraction.

XML schema definition (XSD) : The World Wide Web Consortium (W3C) standard language that
is used in defining XML schemas. Schemas are useful for enforcing structure and constraining
the types of data that can be used validly within other XML documents. XML schema definition
refers to the fully specified and currently recommended standard for use in authoring XML
schemas .

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications libr ary point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not

match. You can confirm t he correct section numbering by checking the Errata .

https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=90598
https://go.microsoft.com/fwlink/?LinkId=90453
https://go.microsoft.com/fwlink/?LinkId=90602
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906

7 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com . We will

assist you in finding the relevant information.

[ECMA -376] ECMA International, "Office Open XML File Formats", 1st Edition, ECMA -376, December
2006, http://www.ecma - international.org/publications/stan dards/Ecma -376.htm

[MS -CUSTOMUI2] Microsoft Corporation, " Custom UI XML Markup Version 2 Specification ".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requi rement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc -editor.org/rfc/rfc2119.txt

[XMLNS] Bray, T., Hollander, D., Layman, A., et al., Eds., "Namespaces in XML 1.0 (Third Edition)",

W3C Recommendation, December 2009, http://www.w3.org/TR/2009/REC -xml -names -20091208/

[XMLSCHEMA1] Thompson, H., Beech, D., Maloney, M., and Mendelsohn, N., Eds., "XML Schema Part

1: Structures" , W3C Recommendation, May 2001, http://www.w3.org/TR/2001/REC -xmlschema -1-
20010502/

[XMLSCHEMA2] Biron, P.V., Ed. and Malhotra, A., Ed., "XML Schema Part 2: Datatypes", W3C
Recommendation, Ma y 2001, http://www.w3.org/TR/2001/REC -xmlschema -2-20010502/

1.2.2 Informative References

None.

mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-CUSTOMUI2%5d.pdf#Section_bad56c217b1541bcaf328b5afe6e922e
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=191840
https://go.microsoft.com/fwlink/?LinkId=90608
https://go.microsoft.com/fwlink/?LinkId=90608
https://go.microsoft.com/fwlink/?LinkId=90610

8 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

2 Custom UI

The su bordinate clauses specify the semantics for the Custom UI XML markup contained within the
ECMA-376 Office Open XML File Formats, as specified in [ECMA -376] . These semantics describe
customiz ation of the UI interface. Examples in the following clauses highlight customizations in the
context of the Microsoft Office Fluent interface (UI) but the concepts extend naturally to any user
interface.

Customization of the UI is accomplished via the addi tion of parts containing Custom UI XML markup to
the containing document package.

2.1 Parts

The parts described in the subordinate sections detail the additional part types utilized by CustomUI in
an ECMA -376 Office Open XML File Formats [ECMA -376] file.

2.1.1 Quick Access Toolbar Custom izations Part

Content
Type:

application/xml

Root

Namespace:

http://schemas.microsoft.com/office/2006/01/customui

Source
Relationship:

http://schemas.microsoft.com/office/2006/relationships/ui/userCustomization

The syntax of the structures contained in this part uses XML schema definition (XSD) , as specified
in [XMLSCHEMA1] and [XMLSCHEMA2] .

This specification defines and references various XML namespaces by using the mechanisms
specified in [XMLNS] .

An instance of this part type contains information about the quick access toolbar customizations

specific to the containing pac kage.

For example, a user can customize the quick access toolbar for his WordProcessingML document to
contain the UI controls that they commonly use.

A package is permitted to contain at most one Quick Access Toolbar Customizations part, and that
part is the target of a relationship in the package - relationship item for the document.

For example, the following package part - relationship item contains a relationship to a Quick Access

Toolbar Customizations part, which is stored in the ZIP item /userCustomization/customUI.xml:

 <Relationships xmlns="é">

 <Relationship Id="rId2"

 Type="http://é/2006/relationships/ui/userCustomization"

 Target="/userCustomization/customUI.xml" />

 </Relationships>

The root element for a part of this content type is cus tomUI .

For example, the following Quick Access Toolbar Customizations content markup specifies that the

control with identifier "SpellingAndGrammar" is to be added to the quick access toolbar for the
package:

 <mso:customUI xmlns:mso="http://schemas.microso ft.com/office/2006/01/customui">

 <mso:ribbon>

https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=90608
https://go.microsoft.com/fwlink/?LinkId=90610
https://go.microsoft.com/fwlink/?LinkId=191840

9 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

 <mso:qat>

 <mso:documentControls>

 <mso:control idQ="mso:SpellingAndGrammar" visible="true" />

 </mso:documentControls>

 </mso:qat>

 </mso:ribbon>

 </mso:customUI>

A Quick Access Toolbar Customizations part is locate d within the package containing the source
relationship. Expressed syntactically, the TargetMode attribute of the Relationship element is
"Internal".

A Quick Access Toolbar Customizations part does not have implicit or explicit relationships to any
other p art defined by ECMA -376 Office Open XML File Formats, as specified in [ECMA -376] .

2.1.2 Ribbon Extensibility Part

Content
Type:

application/xml

Root
Namespace:

http://schemas.microsoft.com/office/2006/01/customui

Source
Relationship:

http://schemas.microsoft.com/office/2006/relationships/ui/extensibility

The syntax of the structures contained in this part uses XML schema definition (XSD) , as specified
in [XMLSCHEMA1] and [XMLSCHEMA2] .

This specification defines a nd references various XML namespaces by using the mechanisms
specified in [XMLNS] .

An instance of this part type contains inform ation about the ribbon customizations specific to the

containing package.

For example, a SpreadsheetML document that represents a timecard could contain custom UI controls

to guide the user in filling out the timecard.

A package is permitted to contain at most one Ribbon Extensibility part, and that part is the target of
a relationship in the package - relationship item for the document.

For example, the following package part - relationship item contains a relationship to a Ribbon
Extensibility part, which is stored in the ZIP item /customUI/customUI.xml:

 <Relationships xmlns="é">

 <Relationship Id="rId5"

 Type="http://é/2006/relationships/ui/extensibility"

 Target="/customUI/customUI.xml" />

 </Relationships>

The root element for a part of this content type is customUI .

For example, the following Ribbon Extensibility content markup specifies that the ribbon tab with

identifier "TabHome" is to be hidden for the containing package:

 <customUI xmlns="http://schemas.microsoft.com/office/2006/01/customui">

 <ribbon>

 <t abs>

 <tab idMso="TabHome" visible="false" />

 </tabs>

 </ribbon>

https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=90608
https://go.microsoft.com/fwlink/?LinkId=90610
https://go.microsoft.com/fwlink/?LinkId=191840

10 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

 </customUI>

A Ribbon Extensibility part is located within the package containing the source relationship. Expressed
syntactically, the TargetMode attribute of the Relationship element is "Inter nal".

A Ribbon Extensibility part is permitted to have explicit relationships to the following parts defined by
ECMA-376 Office Open XML File Formats, as specified in [ECMA -376] :

Á Image Part, as specified in [ECMA -376] Part 1 section15.2.13.

2.2 Elements

A Custom UI document contains customizations of an application's UI. Customizations are mainly of
two types:

Á Modifications of the application's built - in UI, such as hid ing or disabling built - in UI controls or

repurposing command actions.

Á Creation of custom UI controls, such as a custom ribbon tab, menu item, or quick access

toolbar button.

For example, consider the following Custom UI document:

 <customUI xmlns="http://sc hemas.microsoft.com/office/2006/01/customui">

 <commands>

 <command idMso="Bold" enabled="false" />

 </commands>

 <ribbon>

 <tabs>

 <tab idMso="TabHome" visible="false" />

 <tab id="CustomTab" label="Custom Tab">

 <group id="CustomGroup" label="Custom Group">

 <button id="CustomButton" label="Custom Button"

 size="large" imageMso="HappyFace" onAction="OnButtonClick" />

 </group>

 </tab>

 </tabs >

 </ribbon>

 </customUI>

This exampl e disables the command with an identifier of "Bold", hides the ribbon tab with an identifier
of "TabHome", and creates a new custom ribbon tab with a custom button in it.

The full XML Schema Definition of the XML Schema fragments listed in this section is defined in
Appendix A of [MS -CUSTOMUI2] .

2.2.1 box (Box Grouping Container)

This element specifies a grouping container control that can be used to align controls vertically or

horizontally. Box elements can be nested to create complex UI layouts.

For example, consider a group of controls that are laid out horizontally, as follows:

https://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-CUSTOMUI2%5d.pdf#Section_bad56c217b1541bcaf328b5afe6e922e

11 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Figure 1 : Controls grouped horizontally

This layout is specified using the following XML fragment :

 <box id="box" boxStyle="horizontal">

 <button id="button1" label="Button 1" imageMso="HappyFace" />

 <button id="button2 " label="Button 2" imageMso="HappyFace" />

 </box>

This is contrasted to the default vertical layout that is used if the box element is not specified.

The following table summarizes the elements that are parents of this element.

Parent Elements Section

box 2.2.1

group 2.2.23

The following table summarizes the child elements of this element.

Child Elements Section

box (Box Grouping Container) 2.2.1

button (Button) 2.2.2

buttonGroup (Button Grouping Container) 2.2.5

checkBox (Check Box) 2.2 .6

comboBox (Combo Box) 2.2.7

control (Control Clone) 2.2.12

dropDown (Drop -down Control) 2.2.17

dynamicMenu (Dynamic Menu) 2.2.19

editBox (Edit Box) 2.2.20

gallery (Gallery) 2.2.21

labelControl (Text Label) 2.2.25

menu (Menu) 2.2.28

splitButton (Spl it Button) 2.2.38

toggleButton (Toggle Button) 2.2.43

The following table summarizes the attributes of this element.

12 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Descri ption

boxStyle (box
style)

Specifies the layout direction for the child controls inside of the box element.

If this attribute is omitted, the child controls SHOULD be laid out horizontally.

For example, consider a group of controls to be laid out vertically. This is specified using the
following XML:

 <box id="box" boxStyle="vertical">

 é
 </box>

The possible values for this attribute are defined by the ST_BoxStyle simple type, as
specified in section 2.3.1 .

getVisible
(getVisible
callback)

Specifies the name of a callback function that is called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified , the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine th e visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2 .

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id and idQ attributes are mutually exclusive. At least on e of these attributes is to be
specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13 .

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id and idQ attributes are mutually exclusive. At least one of these attributes is to be
specified.

For example, consider the following XML fragment:

 <customUI

 xmlns="http://schemas.microsoft.com/office /2006/01/customui"

 xmlns:ex="http://www.example.com">

 <ribbon>

 <tabs>

 <tab idQ="ex:OtherTab" label="Shared Tab">

 <group id="MyGroup" label="My Group">

 é

 </group>

 </tab>

 </tabs>

 </ribbon>

13 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Descri ption

 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If that
tab cannot be found, it is created. A new group belonging to this file is added to the tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9 .

insertAfterMso
(identifier of built -
in control to insert
after)

Specifies the identifier of a built - in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfte rQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the follow ing XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built - in tab with an id of "TabHome".

The possible values for this attribu te are defined by the ST_ID simple type, as specified in
section 2.3.5 .

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this co ntrol is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the co ntrols SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9.

insert BeforeMso
(identifier of built -

in control to insert
before)

Specifies the identifier of a built - in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built - in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple, as specified in
section 2.3.5.

14 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Descri ption

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted bef ore. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9.

visible (control
visibility)

Specifies the visibi lity state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built - in tab with an identifier of "TabHome" is to be hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML sche ma fragment defines the contents of this element:

 <xsd:complexType name="CT_Box">

 <xsd:group ref="EG_Controls" minOccurs="0" maxOccurs="1000"/>

 <xsd:attributeGroup ref="AG_IDCustom"/>

 <xsd:attributeGroup ref="AG_Visible"/>

 <xsd:attributeGroup r ef="AG_PositionAttributes"/>

 <xsd:attribute name="boxStyle" type="ST_BoxStyle" use="optional"/>

 </xsd:complexType>

2.2.2 button (Button)

This element specifies a standard push -button control that performs an action when clicke d.

For example, consider a button control, as follows:

Figure 2 : A button control

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace" />

15 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

The following table summarizes the elements that are parents of this element.

Parent Elements Section

box 2.2.1

group 2.2.23

The following table summarizes the attribut es of this element.

Attributes Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button i d="button" label="Button" imageMso="HappyFace"

 description="This is a verbose description that describes

 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in se ction 2.3.8 .

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOUL D default to being enabled.

This attribute cannot be used to enable a built - in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function that is called to determine the detailed description
of this control.

The getDescription and description attributes are mutuall y exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callb ack function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2 .

getEnabled
(getEnabled

Specifies the name of a callback function that is called to determine the enabled state of
this control.

16 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is to be called when the
application needs to determi ne the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" / >

In this example, the GetButtonImage callback function is to be called when the
application needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function that is called to determine the suggested KeyTip
of this control.

The getKeytip and keytip attributes are mutually exclus ive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callba ck function is to be called when the
application needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <butto n id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is to be called when the application
needs to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple t ype, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

17 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="button" getScreent ip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is to be called when the
application needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
is to display the icon of this control.

This attribute SHOULD have no effect if the size or getSiz e attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is to be called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are def ined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
is to display the label of this control.

This attribute SH OULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, co nsider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is to be called when the
application needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

 <button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is to be called when the application
needs to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifi es the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

18 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

For example, conside r the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is to be called when the
application needs to determine the supertip of the button.

The possible values for this a ttribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is to be called when the application
needs to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies th e identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control is passed to callback functions to identify which control
corresponds to the function call.

The id , idQ , and idMso attributes are mutually excl usive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13 .

idMso (built - in
control identifier)

Specifies the identifier of a built - in control.

The contents of this attribute are app lication -defined.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifie r of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

19 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <customUI

 xmlns="http://schemas.microsoft.com/office/2006/01/customui"

 xmlns:ex="http://www.example.com">

 <ribbon>

 <tabs>

 <tab idQ="ex:OtherTab" label="Shared Tab">

 <group id="MyGroup" label="My Group">

 é

 </group>

 </tab>

 </tabs>

 </ribbon>

 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image that is to be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose i con is to be the embedded image file referenced by

the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14 .

imageMso (built - in
image identifier)

Specifies the identifier of a built - in image that is to be used as the icon of this control.

The contents of this attribute are application -defined and SHOULD be ignored if not
understood.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the b uilt - in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built - in
control to insert
after)

Specifies the identifier of a built - in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes a re specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

 é

20 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built - in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qua lified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeM so , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built - in
control to insert
before)

Specifies the identifier of a built - in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built -
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert

before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are

mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this ex ample, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

21 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, con sider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in sectio n 2.3.7 .

label (label) Specifies a string that is to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Butto n".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually e xclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML f ragment:

 <button id="button" imageMso="HappyFace" label="Button"

22 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified , the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"

 label="Button with no icon" />

The possible valu es for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"

 imageMso="HappyFace" />

This specifies a button that has a label , but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size) Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

This is specified using the following XML fragment:

 <toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified

23 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

in section 2.3.10 .

supertip (supertip) Specifies a string that is to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, cons ider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="Screentip"

 supertip="This is the supertip string" />

The possible values f or this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string .

For exampl e, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"

 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the ButtonClicked
callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If t hese attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built - in tab with an id of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

24 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

 <xsd:complexType name="CT_Button">

 <xsd:complexContent>

 <xsd:extension base="CT_ButtonRegular">

 <xsd:attribute Group ref="AG_SizeAttributes"/>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

2.2.3 button (Unsized Button)

This element specifies a push -button that, because of its location, cannot have its size changed. The
size attribute is not present. This element otherwise behaves like the regular button element, as

specified in section 2.2.2 .

The following table summarizes the elements that are parents of this element.

Parent Elements Section

buttonGroup 2.2.5

dialogBoxLauncher 2.2.15

documentControls 2.2.16

dropDown 2.2.17

gallery 2.2.21

gallery 2.2.22

menu 2.2.28

menu 2.2.26

menu 2.2.29

menu 2.2.27

officeMenu 2.2.31

sharedControls 2.2.35

The following table summarizes the attributes of this element.

Attributes Description

description Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"

 description="This is a verbose description that describes

25 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8 .

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built - in control that would otherwise be disabled
by the application.

For example, consider the fo llowing XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetBu ttonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2 .

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attr ibute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is to be called when the
application needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Spec ifies the name of a callback function to be called to determine the icon of this control.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is to be called when the
application needs to determine the icon of the button.

The possible values for this attribute are defin ed by the ST_Delegate simple type, as

26 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function that is called to determine the suggested KeyTip
of th is control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeyt ip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is to be called when the
application needs to determine the KeyTip of the button .

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is to be called when the application
needs to determine the label of the button .

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or disp lay
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is to be called when the
application needs to determine the screen tip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the appli cation
is to display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" g etShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is to be called when the
application needs to determine whether to display the icon of the button .

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel Specifies the name of a callback function to be called to determine whether the application

27 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

(getShowLabel
callback)

is to display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButt onLabelVisible callback function is to be called when the
application needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSuper tip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHO ULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is to be called when the
application needs to determine the supertip of the button .

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
con trol.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In thi s example, the IsButtonVisible callback function is to be called when the application
needs to determine the visibility of the button .

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id , id Q, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13 .

idMso (built - in
control identifier)

Specifies the identifier of a built - in contro l.

The contents of this attribute are application -defined.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes

28 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This create s a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI

 xmlns="http://schemas.microsoft.com/office/2006/01/customui"

 xmlns:ex="http://www.example.com">

 <ribb on>

 <tabs>

 <tab idQ="ex:OtherTab" label="Shared Tab">

 <group id="MyGroup" label="My Group">

 é

 </group>

 </tab>

 </tabs>

 </ribbon>

 </customUI>

In this case, "ex" is an XML namespace prefix for the namespace http: //www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If

that tab cannot be found, it is created. A new group belonging to this file is added to the
tab .

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribut e is used to specify an embedded picture that resides locally within the containing
file.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon is to be the embedded image file referenced by
the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14 .

imageMso (built - in
image identifier)

Specifies the identifier of a built - in image to be used as the icon of this control.

The contents of this attribute are application -defined and SHOULD be ignored if not
understood.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

29 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the built - in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built - in
control to insert
after)

Specifies the identifier of a built - in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new cus tom tab with an id of "MyTab" is to be inserted after the built - in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBe foreMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML frag ment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is inserted after the custom tab
with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built - in
control to insert
before)

Specifies the identifier of a built - in control that this control is to be inserted before. If the
value of this attribute i s not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in t he order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is inserted before the built - in tab
with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

section 2.3.5.

insertBeforeQ Specifies the qualified identifier of a control that this control is to be inserted before. If the

30 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

(qualified identifier
of control to insert
before)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" l abel="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is inserted before the custom tab
with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (Keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the contr ol automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7 .

label (Label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribut e is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .

onAction
(onAction callback)

Specifies the name of a callback function to be calle d when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The poss ible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclus ive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or
display no screentip at all.

31 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragme nt:

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as fol lows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"

 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (Show
Label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <but ton id="button" label="Label" showLabel="false"

 imageMso="HappyFace" />

This specifies a button that has a label, but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are de fined by the XML schema boolean datatype.

supertip (Supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If n either attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

32 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="Screentip"

 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (Tag) Specifies an arbitrary string that can be used to h old data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string .

For example, consider the follow ing XML fragment:

 <button id="button" label="Button" tag="123456"

 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If t hese attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built - in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_ButtonRegular">

 <xsd:complexContent>

 <xsd:extension base="CT_Con trol">

 <xsd:attributeGroup ref="AG_Action"/>

 <xsd:attributeGroup ref="AG_Enabled"/>

 <xsd:attributeGroup ref="AG_Description"/>

 <xsd:attributeGroup ref="AG_Image"/>

33 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

2.2.4 button (Button I nside of a Split Button)

This element specifies a push -button that is a child of a split button control. The visible and
getVisible attributes are not present because the visibility is controlled by the split button. This
element otherwise behaves in the same way as the unsized button element, as specified in section

2.2.3 .

The following table summarizes the elements that are parents of this element.

Parent Elements Section

splitButton 2.2.38

splitButton 2.2.36

splitButton 2.2.37

The following table summarizes the attributes of this element.

Attributes Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description , as follows:

This is spe cified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"

 description="This is a verbose description that describes

 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8 .

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built - in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="butt on" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription

Specifies the name of a callback function to be called to determine the detailed description

34 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

callback) of this control.

The getDescr iption and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button .

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2 .

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is calle d when the application
needs to determine the enabled state of the button .

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback func tion to be called to determine the icon of this control.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button .

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button .

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consid er the following XML fragment:

35 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button .

The possible values for this attribute are defi ned by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function that is called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutu ally exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreent ip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2 .

getShowImage
(getShowImage
callback)

Specifies the name of a callback function that is called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisib le callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function that is called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButt onLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(g etSupertip
callback)

Specifies the name of a callback function that is called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

36 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function that is called to determine the visibility state of
this control. This attribute is prohibited.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="Is ButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in sect ion 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function ca ll.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13 .

idMso (built - in
control identifier)

Specifies the identifier of a built - in control.

The contents of this attribute are application -defined.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id , idQ , and idMso attributes are mutually exclusiv e. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI

 xmlns="http://schemas.microsoft.com/office/2006/01/customui"

37 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 xmlns:ex="http://www.example.com">

 <ribbon>

 <tabs>

 <tab idQ="ex: OtherTab" label="Shared Tab">

 <group id="MyGroup" label="My Group">

 é

 </group>

 </tab>

 </tabs>

 </ribbon>

 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image that is used as the icon for this control.
This attribute is used to specify an embedded picture that resides locally within the

containing file.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified , no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14 .

imageMso (built - in
image identifier)

Specifies the identifier of a built - in image tha t is used as the icon of this control.

The contents of this attribute are application -defined and SHOULD be ignored if not
understood.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon S HOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the built - in image with an id of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built - in
control to insert
after)

Specifies the identifier of a built - in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are def ined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

 é

38 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built - in
tab with an identifier o f "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" inse rtAfterQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QI D simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built - in
control to insert
before)

Specifies the identifier of a built - in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" inse rtBeforeMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built -
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple t ype, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert

before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are

mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in t he XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of x:OtherTab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

39 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

The keytip and getKeytip attributes are mut ually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7 .

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .

onAction
(onActio n callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this contr ol.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

40 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon .

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"

 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"

 imageMso="HappyFace" />

This sp ecifies a button that has a label , but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

41 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="Screentip"

 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String sim ple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string .

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"

 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control. This attribute is prohibited.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visib le="false" />

In this example, the built - in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd: complexType name="CT_VisibleButton">

 <xsd:complexContent>

 <xsd:restriction base="CT_ButtonRegular">

 <xsd:attribute name="visible" use="prohibited"/>

 <xsd:attribute name="getVisible" use="prohibited"/>

 </xsd:restriction>

 </xsd:complexConte nt>

 </xsd:complexType>

2.2.5 buttonGroup (Button Grouping Container)

This element specifies a grouping container that groups controls together visually. The child controls
are laid out horizontally.

For example, consider a group of buttons, as follows:

42 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Figure 3 : A group of buttons

This is specified using the following XML fragment:

 <buttonGroup id="buttonGroup">

 <button id="button1" imageMso="Bold" />

 <button id="button2" im ageMso="Italic" />

 <button id="button3" imageMso="Underline" />

 </buttonGroup>

The following table summarizes the elements that are parents of this element.

Parent Elements Section

box 2.2.1

group 2.2.23

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

control (Unsized Control Clone) 2.2.11

dynamicMenu (Unsized Dynamic Menu) 2.2.18

gallery (Unsized Gallery) 2.2.22

menu (Unsized Menu) 2.2.26

splitButton (Unsized Split Button) 2.2.36

toggleButton (Unsized Toggle Button) 2.2.42

The following table summarizes the attributes of this element.

Attributes Description

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the follow ing XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as

43 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

specified in section 2.3.2 .

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identif ier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.

For example, consider the following XM L fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13 .

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id and idQ attributes are mu tually exclusive. At least one of these attributes MUST be
specified.

For example, consider the following XML fragment:

 <customUI

 xmlns="http://schemas.microsoft.com/office/2006/01/customui"

 xmlns:ex="http://www.example.com">

 <ribbon>

 <tabs>

 <tab idQ="ex:OtherTab" label="Shared Tab">

 <group id="MyGroup" label="My Group">

 é

 </group>

 </tab>

 </tabs>

 </ribbon>

 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab .

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

insertAfterMso
(identifier of built - in
control to insert
after)

Specifies the identifi er of a built - in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of t hese attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

 é
 </t ab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built - in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

44 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

section 2.3.5 .

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is no t understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the o rder they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built - in
control to insert
before)

Specifies the identifier of a built - in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" inse rtBeforeMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built -
in tab with an id of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in th e XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier o f "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exc lusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

45 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <tab idMso="TabHome" visible="false" />

In this example, the built - in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_ButtonGroup">

 <xsd:sequence>

 <xsd:choice minOccurs="0" maxOccurs="1000">

 <xsd:element name="control" type="CT_ControlCloneRegular"/>

 <xsd:element name="button" type="CT_ButtonRegular"/>

 <xsd:element name="toggleButton" type="CT_ToggleButtonRegular"/>

 <xsd:element name="gall ery" type="CT_GalleryRegular"/>

 <xsd:element name="menu" type="CT_MenuRegular"/>

 <xsd:element name="dynamicMenu" type="CT_DynamicMenuRegular"/>

 <xsd:element name="splitButton" type="CT_SplitButtonRegular"/>

 </xsd:choice>

 </xsd:sequence>

 <xsd:attributeGroup ref="AG_IDCustom"/>

 <xsd:attributeGroup ref="AG_Visible"/>

 <xsd:attributeGroup ref="AG_PositionAttributes"/>

 </xsd:complexType>

2.2.6 checkBox (Check Box)

This element specifies a standard checkbox c ontrol.

For example, consider a checkbox control, as follows:

Figure 4 : A checkbox control

This is specified using the following XML fragment:

 <checkBox id="checkBox" label="CheckBox" />

The following table summarizes the elemen ts that are parents of this element.

Parent Elements Section

box 2.2.1

group 2.2.23

menu 2.2.28

menu 2.2.26

menu 2.2.29

46 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Parent Elements Section

menu 2.2.27

officeMenu 2.2.31

The following table summarizes the attributes of this element.

Attributes Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed de scription, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"

 description="This is a verbose description that describes

 the function of this control in detail." />

The possible val ues for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8 .

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built - in control that would otherwise be disabled
by the application.

For example, consider the fo llowing XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetBu ttonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2 .

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exc lusive. If neither attribute is

47 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the follo wing XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonK eytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this att ribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getPressed
(getPressed
callback)

Specifies the name of a callback function to be called to determine the toggled state of this
control.

If this attribute is omitted, the con trol SHOULD default to the off state.

For example, consider the following XML fragment:

 <toggleButton id="toggle" getPressed="IsButtonToggled" />

48 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

In this example, the IsButtonToggled callback function is called when the application
needs to determine the t oggle state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the scree ntip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the fo llowing XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute a re defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this examp le, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

g etShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
displays the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButt onLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(g etSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

49 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this exampl e, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifi er)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id , idQ , and idMso attri butes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13 .

idMso (built - in
control identifier)

Specifies the identifier of a built - in control.

The contents of this attribute are application -defined.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified
control identifier)

Specifies a qu alified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For exam ple, consider the following XML fragment:

 <customUI

 xmlns="http://schemas.microsoft.com/office/2006/01/customui"

 xmlns:ex="http://www.example.com">

 <ribbon>

 <tabs>

 <tab idQ="ex:OtherTab" label="Shared Tab">

 <group id="MyGroup" label ="My Group">

 é

50 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 </group>

 </tab>

 </tabs>

 </ribbon>

 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab .

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" i mage="ForestPic" />

This specifies a custom button whose icon is to be the embedded image file referenced by
the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14 .

imageMso (built - in
image identifier)

Specifies the identifier of a built - in image to be used as the icon of this control.

The contents of this attribute are application -defined and SHOULD be ignored if not
understood.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these

attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button to use the built - in image with an id of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built - in

control to insert
after)

Specifies the identifier of a built - in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually e xclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label ="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is be inserted after the built - in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2. 3.5.

51 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , inse rtAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built - in
control to insert
before)

Specifies the identifier of a built - in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existi ng set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built -
in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
bef ore)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mut ually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherT ab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip fo r the control automatically.

For example, consider a button with KeyTip 'K', as follows:

52 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7 .

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neith er attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute a re defined by the ST_String simple type, as
specified in section 2.3.11 .

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defin ed by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

53 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as fol lows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"

 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies wh ether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"

 imageMso="HappyFace" />

This specifies a button that has a label , but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="Screentip"

 supertip="This is the superti p string" />

54 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SH OULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string .

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"

 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

vi sible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fr agment:

 <tab idMso="TabHome" visible="false" />

In this example, the built - in tab with an id of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the conte nts of this element:

 <xsd:complexType name="CT_CheckBox">

 <xsd:complexContent>

 <xsd:restriction base="CT_ToggleButtonRegular">

 <xsd:attribute name="image" use="prohibited"/>

 <xsd:attribute name="imageMso" use="prohibited"/>

 <xsd:attribute na me="getImage" use="prohibited"/>

 <xsd:attribute name="showImage" use="prohibited"/>

 <xsd:attribute name="getShowImage" use="prohibited"/>

 <xsd:attribute name="showLabel" use="prohibited"/>

 <xsd:attribute name="getShowLabel" use="prohibited"/>

 </xsd:restriction>

 </xsd:complexContent>

 </xsd:complexType>

2.2.7 comboBox (Combo Box)

This element specifies a standard combo box control that allows a user to input a text string or select
one from a list.

For exampl e, consider a combo box control, as follows:

55 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Figure 5 : A combo box control

This is specified using the following XML fragment:

 <comboBox id="comboBox" label="Combo Box">

 <item id="item1" label="Item 1" />

 <item id="item2" label="Item 2" />

 <item id="item3" label="Item 3" />

 </comboBox>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section

item (Selection Item) 2.2.24

The following table summarizes the attributes of this element.

Attributes Description

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built - in control that would otherwise be disabled
by the application.

For example, consider the fo llowing XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for th is attribute are defined by the XML schema boolean datatype.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusi ve. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

56 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2 .

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback func tion is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemCount
(getItemCount
callback)

Specifies the name of a c allback function to be called to determine the number of selection
items in this control.

If this attribute is omitted, the control SHOULD display any selection items that are
specified as child elements. If no such items are specified, the control SHOULD be empty.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount" />

In this example, the GetGalleryItemCount callback function is called when the application
needs to determine the number of items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemID
(getItemID
callback)

Specifies the name of a callback function to be called to determine the identifier of a
specific dyna mically -created selection item, identified by index.

If this attribute is omitted, dynamically -created selection items SHOULD have empty
identifiers.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"

 getItemID="GetGalleryItemID" />

In this example, the GetGalleryItemID callback function is called when the application
needs to determine the identifier of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemImage
(getItemImage
callback)

Specifies the name of a callback function to be called to determine the icon of a specific
dynamically -created selection item, identified by index.

If this attribute is omitt ed, dynamically -created selection items SHOULD NOT display icons.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"

 getItemImage="GetGalleryItemImage" />

In this example, the GetGalleryItemImage callback function is called when the
application needs to determine the icon of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

57 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

getItemLabel
(getItemLabel
callback)

Speci fies the name of a callback function to be called to determine the label of a specific
dynamically -created selection item, identified by index.

If this attribute is omitted, dynamically -created selection items SHOULD NOT display labels.

For example, consid er the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"

 getItemLabel="GetGalleryItemLabel" />

In this example, the GetGalleryItemLabel callback function is called when the application
needs to determine the label of a sel ection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemScreentip
(getItemScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of a
specific dynamically -created selection item, identified by index.

If this attribute is omitted, dynamically -created selection items SHOULD use their labels as
their screentips, or display no screentips at all.

For example, consider the following XML f ragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"

 getItemScreentip="GetGalleryItemScreentip" />

In this example, the GetGalleryItemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemSupertip
(getItemSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of a speci fic
dynamically -created selection item, identified by index.

If this attribute is omitted, dynamically -created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryIte mCount"

 getItemSupertip="GetGalleryItemSupertip" />

In this example, the GetGalleryItemSupertip callback function is called when the
application needs to determine the supertip of a selection item.

The possible values for this attribute are defined by t he ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this contro l.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel Specifies the name of a callback function to be called to determine the label of this control.

58 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

callback) The getLabel and label attributes are mutually exclusive. If neither attribute is spec ified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
contr ol.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragme nt:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImag e attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLa bel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButt onLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(g etSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

59 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The poss ible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getText (getText
callback)

Specifies the name of a callback function to be called to determine the text that is displayed
in the control.

For example, consider the following XML fragment:

 <editBox id="editBox" getText="GetEditBoxText" />

In this example, the GetEditBoxText callback function is called when the application needs
to determine the text to display in the control.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and vis ible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisib le callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the id entifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id , idQ , and idMso attributes are mutually e xclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13 .

idMso (built - in
control identifier)

Specifies the identifier of a built - in control.

The contents of this attribute are application -defined.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML f ragment:

 <control idMso="Bold" />

60 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id , idQ , and idMso attributes are mutually exclusive . At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI

 xmlns="http://schemas.microsoft.com/office/2006/01/customui"

 xmlns:ex="http://www.example.com">

 <ribbon>

 <tabs>

 <tab idQ="ex:O therTab" label="Shared Tab">

 <group id="MyGroup" label="My Group">

 é

 </group>

 </tab>

 </tabs>

 </ribbon>

 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14 .

imageMso (built - in
image identifier)

Specifies the identifier of a built - in image to be used as t he icon of this control.

The contents of this attribute are application -defined and SHOULD be ignored if not
understood.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displ ayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the built - in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

61 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

section 2.3.5.

insertAfterMso
(identifier of built - in
control to insert
after)

Specifies the identifier of a built - in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHO ULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are define d in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built - in
tab with an identifier of " TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built - in
control to insert
before)

Specifies the identifier of a built - in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBe foreMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML frag ment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the built -
in tab with an identifier of "TabHome".

The possible values for this attribute are def ined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is no t understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the o rder they are defined in the XML.

For example, consider the following XML fragment:

62 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab wi th a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control invalidates its contents and re -queries for them when the
user opens its drop -down menu.

If this attribute is omitted, its value SHOULD default to "false".

For example, consider the following XML fragment:

 <comboBox id="comboBox" getItemCount="GetComboBoxItemCount"

 getItemLabel="GetComboBoxItemLabel"

 invalidateContentOnDrop="true" />

In this example, this combo box clears out its items and re -calls the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user ope ns it.

The possible values for this attribute are defined by the XML schema boolean datatype.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither at tribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip= "K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7 .

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .

maxLength
(maximum input
string length)

Specifies an int eger to be used as the maximum length of a string that can be entered
into the control.

If the maxLength attribute is omitted, the length of the input string SHOULD NOT be
limited, except by application -specific constraints.

For example, consider the following XML fragment:

63 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <editBox id="editBox" maxLength="10" />

This specifies an edit box control that can only accept strings up to 10 characters in
length.

The possible values for this attribute are defined by the ST_StringLength simple type, as
specifi ed in section 2.3.12 .

onChange
(onChange
callback)

Specifies the name of a callback function to be called when the text in the control has been
changed by the user.

For example, consider the foll owing XML fragment:

 <editBox id="editBox" onChange="EditBoxTextChanged" />

This specifies an edit box control that calls the EditBoxTextChanged callback function
when the user inputs a text string .

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the applic ation SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fra gment:

64 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="button" showImage="false"

 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemImage
(show item image)

Specifies whether this control displays icons on its selection items.

If this attribute is omitted, the items' icons SHOULD be shown by default.

For example, consider the following XML fragment:

 <gallery id="gallery" label="Gallery" showItemImage="false" >

 <item id="item1" label="Item 1" />

 <item id="item2" label="Item 1" />

 <item id="item3" label="Item 2" />

 <item id="item4" label="Item 3" />

 </gallery>

This specifies a gallery control that does not show any icons on its selection items.

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its l abel.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"

 imageMso="HappyFace" />

This specifies a button that has a label , but does not show it. Even though the label is
hidden, it is provided to access ibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitte d, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

 <editBox id="editBox" sizeString="WWWWWWWWWWWWW" />

This specifies an edit box control that SHOULD be wide enough to display the string
"WWWWWWWWWWWWW".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

65 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="Screentip"

 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simpl e type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute i s omitted, the control's tag value SHOULD default to an empty string .

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"

 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", whi ch is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built - in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_ComboBox">

 <xsd:comp lexContent>

 <xsd:extension base="CT_EditBox">

 <xsd:sequence>

 <xsd:element name="item" type="CT_Item" minOccurs="0" maxOccurs="1000"/>

66 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

 </xsd:sequence>

 <xsd:attributeGroup ref="AG_DropDownAttributes"/>

 <xsd:attributeGroup ref="AG_DynamicCon tentAttributes"/>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

2.2.8 command (Repurposed Command)

This element specifies that a particular built - in command in the application is to be repurposed.

The enabled and getEnabled attributes can be specified to disable a command.

The onAction attribute allows the functionality of a command to be repurposed to run a callback
function. Only commands that execute simple actions (for example, commands represen ted as button
controls) can be repurposed using onAction .

For example, consider the following XML fragment:

 <commands>

 <command idMso="Bold" enabled="false" />

 <command idMso="Paste" onAction="MyPasteFunction" />

 </commands>

In this example, the Bold command is permanently disabled and that the callback function
MyPasteFunction is called when the Paste command is invoked.

The following table summarizes the elements that are parents of this element.

Parent Elements

commands (section 2.2.9)

The following table summarizes the attributes of this element.

Attributes Description

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built - in control that would otherwise be disabled
by the application.

For example, consider the fo llowing XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for th is attribute are defined by the XML schema boolean datatype.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusi ve. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

67 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2 .

idMso (built - in
control identifier)

Specifies the identifier of a built - in control.

The contents of this attribute are application -defined.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an i dentifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

onAction
(onAction callback)

Specifies the name of a callback func tion to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is i nvoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_Command" mixed="false">

 <xsd:att ributeGroup ref="AG_Action"/>

 <xsd:attributeGroup ref="AG_Enabled"/>

 <xsd:attributeGroup ref="AG_IDMso"/>

 </xsd:complexType>

2.2.9 commands (List of Repurposed Commands)

This element specifies a list of repurposed commands. This element SHOULD NOT be specified if the
containing Custom UI XML document is a Quick Access Toolbar Customizations part.

The following table summarizes the elements that are parents of this element.

Parent Elements

customUI (se ction 2.2.14)

The following table summarizes the child elements of this element.

Child Elements Subclause

command (Repurposed Command) section 2.2.8

The following XML schema fragment defines the contents of this element:

68 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

 <xsd:complexType name="CT_Commands">

 <xsd:sequence>

 <xsd:element name="command" type="CT_Command" minOccurs="1" maxOccurs="5000"/>

 </xsd:sequence>

 </xsd:complexType>

2.2.10 contextualTabs (List of Contextual Tab Sets)

This element specifies a list of contextual tab sets. This element SHOULD NOT be specified if the
containing Custom UI XML document is a Quick Access Toolbar Customizations part.

The following table summarizes the elements that are parents of this element.

Parent Elements

ribbon (section 2.2.33)

The following table summariz es the child elements of this element.

Child Elements Subclause

tabSet (Contextual Tab Set) section 2.2.41

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_ContextualTabs">

 <xsd:sequence>

 <xsd:element name="tabSet" type="CT_TabSet" minOccurs="1" maxOccurs="100"/>

 </xsd:sequence>

 </xsd:complexType>

2.2.11 control (Unsized Control Clone)

This element specifies a clone of a control that, because of its location, cannot have its size changed.
The size attribute is not present. The element otherwise behaves like the regular control element, as
specified in section 2.2.12 .

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu
(section 2.2.27); officeMenu (section 2.2.31)

The following table summarizes the attributes of this element.

Attributes Description

enabled (enab led
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built - in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

69 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible valu es for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2 .

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine t he icon of this control.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are m utually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

70 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

The possible values for this attribute are defined by the ST_Delegat e simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neit her attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getSho wImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisib le callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to det ermine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getS upertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
spec ified in section 2.3.2.

71 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13 .

idMso (built - in
control identifier)

Specifies the identifier of a built - in control.

The contents of this att ribute are application -defined.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, con sider the following XML fragment:

 <customUI

 xmlns="http://schemas.microsoft.com/office/2006/01/customui"

 xmlns:ex="http://www.example.com">

 <ribbon>

 <tabs>

 <tab idQ="ex:OtherTab" label="Shared Tab">

 <group id="MyGroup" label="My Gro up">

 é

 </group>

 </tab>

 </tabs>

72 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 </ribbon>

 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that reside s locally within the containing
file.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image=" ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14 .

imageMso (built - in
image identifier)

Specifies the identifier of a built - in image to be used as the icon of this control.

The contents of this attribute are application -defined and SHOULD be ignored i f not
understood.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This spe cifies a custom button that uses the built - in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built - in
control to insert
after)

Specifies the identifier of a built - in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" inse rtAfterMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the built - in
tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHO ULD be ignored.

73 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

after) The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are define d in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built - in
control to insert
before)

Specifies the identifier of a built - in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specifie d, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built - in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identi fier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and ins ertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="M yTab" insertBeforeQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the

custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

74 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7 .

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .

screent ip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip o r display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

75 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="button" showImage="false"

 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attribute s are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"

 imageMso="HappyFace" />

This specifies a button that has a label , but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be show n as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="Screentip"

 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string .

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"

76 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built - in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_ControlCl oneRegular">

 <xsd:complexContent>

 <xsd:restriction base="CT_Control">

 <xsd:attribute name="id" use="prohibited"/>

 </xsd:restriction>

 </xsd:complexContent>

 </xsd:complexType>

2.2.12 control (Control Clone)

This element specifies a clone of an existing control. Built - in controls can be cloned using the idMso
attribute. Custom controls cannot be cloned. Custom controls cannot be created using the control
element.

When an existing control is cloned, its non - locat ion -specific properties, such as the icon and label, are
copied to the clone. Location -specific properties, such as the size and visibility of the control, are not
copied. These properties can be set by specifying additional attributes on the control eleme nt.

For example, consider the following XML fragment:

 <control idMso="Paste" size="large" />

This results in a large copy of the Paste control, as follows:

Figure 6 : A Paste control

The following table summarizes the elements that are parents of this element.

77 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this element.

Attributes Description

description
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"

 description="This is a verbose description that describes

 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8 .

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cann ot be used to enable a built - in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A pe rmanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider t he following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2 .

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

78 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button i d="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simpl e type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attribu tes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the i con of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback functi on is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a ca llback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or displa y
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

79 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of t he button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the con trol SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
displays the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabe l and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in sec tion 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD defau lt to the normal size.

For example, consider the following XML fragment:

 <button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possi ble values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

80 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
call back)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values f or this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be pas sed to callback functions to identify
which control corresponds to the function call.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13 .

idMso (built - in
control identifier)

Specifies the identifier of a built - in control.

The contents of this attribute are application -defined.

The id , idQ , and idMso attributes are mutually e xclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or co ntainers created by other Custom
UI documents.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI

 xmlns="http://schemas.microsoft.com/ office/2006/01/customui"

81 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 xmlns:ex="http://www.example.com">

 <ribbon>

 <tabs>

 <tab idQ="ex:OtherTab" label="Shared Tab">

 <group id="MyGroup" label="My Group">

 é

 </group>

 </tab>

 </tabs>

 </ribbon>

 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is ad ded to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing

file.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes ar e specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPi c".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14 .

imageMso (built - in
image identifier)

Specifies the identifier of a built - in image to be used as the icon of this control.

The contents of this attribute are application -defined and SHOULD be ignored if not
understood.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the built - in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built - in
control to insert
after)

Specifies the identifier of a built - in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appende d to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

 é

82 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 </tab>

In this example, a new custom tab with an identifier of " MyTab" is to be inserted after the
built - in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" inse rtAfterQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built - in
control to insert
before)

Specifies the identifier of a built - in control that this control is to be insert ed before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
app ended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built - in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert

bef ore)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are

mut ually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherT ab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

83 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7 .

label (label) Specifies a string to be used as the label for this control.

The labe l and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .

onAction
(onAction callback)

Specifies the name of a callback fu nction to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

84 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"

 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label .

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"

 imageMso="HappyFace" />

This specifies a button that has a label , but does not show it. Even though the label is
hidden, it is provided to accessibil ity tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size) Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control 's size SHOULD default to the normal size.

For example, consider a large button, as follows:

This is specified using the following XML fragment:

 <toggleButton idMso="Bold" size="large" />

85 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10 .

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" image Mso="HappyFace" label="Button"

 size="large" screentip="Screentip"

 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbit rary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string .

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"

 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible val ues for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built - in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

86 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_ControlClone">

 <xsd:complexContent>

 <xs d:restriction base="CT_Button">

 <xsd:attribute name="id" use="prohibited"/>

 <xsd:attribute name="onAction" use="prohibited"/>

 </xsd:restriction>

 </xsd:complexContent>

 </xsd:complexType>

2.2.13 control (Quick Access Toolbar Control Clone)

This element specifies a clone of an existing control. It is specific to control clones on the quick access
toolbar, but otherwise behaves the same way as the regular control element, as specif ied in section
2.2.12 .

The following table summarizes the elements that are parents of this element.

Parent Elements

documentControls (section 2.2.16); sharedControls (section 2.2.35)

The following table summarizes the attributes of this element.

Attributes Description

descripti on
(description)

Specifies a detailed description of the control, which is displayed in detailed views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed tex t.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"

 description="This is a verbose description that describes

 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8 .

enabled (enabled
state)

Specifie s the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built - in control that would otherwis e be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

87 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed descri ption
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescr iption="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button .

The possible values for this attribute are defined by the ST_Delegate sim ple type, as
specified in section 2.3.2 .

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsBut tonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" g etKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is spec ified,

88 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
contr ol.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragme nt:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attr ibute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the bu tton.

The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2.

89 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

 <button id="button" getSize="GetButtonSize" />

In this example, the GetButt onSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (custom control
identifier)

Specifies the identifier for a custom control. All new custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id , idQ , and idMso attributes are mut ually exclusive.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idMso (built - in
control identifier)

Specifies the identifier of a built - in control.

The contents of this attribute are application -defined.

The id , i dQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

90 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible v alues for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control. The identifier is qualified with an XML
namespace prefix that specifies the ow ner of the control. If the namespace is equal to the
Custom UI namespace, the idQ attribute behaves in the same manner as the idMso
attribute. If the namespace is equal to the name of the current file, the idQ attribute
behaves like the id attribute. If th e namespace is equal to the name of a different file, the
attribute references a control from that file.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id , idQ , and idMso attributes are mutually exclusive.

For example, consider the following XML fragment:

 <tab idQ="x:OtherTab">

 <group id="MyGroup" label="My Group">

 é

 </group>

 </tab>

In this case x is an XML namespace equal to the name of another file that has a Custom UI
document with a tab with an identifier of "OtherTab". This example adds a custom group
to that tab .

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embed ded picture that resides locally within the containing
file.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <but ton id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified i n
section 2.3.14 .

imageMso (built - in
image identifier)

Specifies the identifier of a built - in image to be used as the icon of this control.

The contents of this attribute are application -defined and SHOULD be ignored if not
understood.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imag eMso="Bold" />

This specifies a custom button that uses the built - in image with an identifier of "Bold".

91 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built - in
con trol to insert
after)

Specifies the identifier of a built - in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" inse rtAfterMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built - in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined i n the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified id entifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built - in
control to insert
before)

Specifies the identifier of a built - in control that th is control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built - in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identi fier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood. it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and ins ertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

92 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, t he application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7 .

label (label) Specifies a string to be used as the label for this control.

The labe l and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .

screentip
(screentip)

Specifies a string to be shown as the scre entip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a bu tton with a screentip, as follows:

This is specified using the following XML fragment:

93 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"

 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

This attribute SHOULD have n o effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"

 imageMso="HappyFace" />

This specifies a button that has a label , but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible valu es for this attribute are defined by the XML schema boolean datatype.

size (control size) Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

This is specified using the following XML fragment:

94 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10 .

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="Screentip"

 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built - in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_ControlCloneQat">

 <xsd:complexContent>

 <xsd:extension base="CT_ControlBase">

 <xsd:attribute name="id" type="ST_ID" use="optional"/>

 <xsd:attribute name="idQ" type="ST_QID" use="optional"/>

 <xsd:attributeGroup ref="AG_IDMso"/>

 <xsd:attributeGroup ref="AG_Description"/>

 <xsd:attrib uteGroup ref="AG_SizeAttributes"/>

 </xsd:extension>

 </xsd:complexContent>

95 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

 </xsd:complexType>

2.2.14 customUI (Custom UI Document Root)

This element specifies the root tag in a Custom UI XML document.

The f ollowing table summarizes the child elements of this element.

Child Elements Section

commands (List of Repurposed Commands) 2.2.9

ribbon (Ribbon) 2.2.33

The following table summarizes the attributes of this element.

Attributes Description

loadImage
(loadImage
callback)

Specifies the name of a callback function to be called when the application needs to load an
image for a control's icon.

For example, consider the following XML fragment:

 <customUI xmlns="é" loadImage="LoadImageFunction" />

In this example, the LoadImageFunction callback is called to load icon images.

The possible valu es for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2 .

onLoad (onLoad
callback)

Specifies the name of a callback function to be called when the Custom UI file is loaded by
the application.

For example, consider the following XML fragment:

 <customUI xmlns="é" onLoad="OnCustomUILoaded" />

In this example, the OnCustomUILoaded callback function is called when the containing
Custom UI file is loaded.

The poss ible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_CustomUI">

 <xsd:sequence>

 <xsd:element name=" commands" type="CT_Commands" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="ribbon" type="CT_Ribbon" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 <xsd:attribute name="onLoad" type="ST_Delegate" use="optional"/>

 <xsd:attribute name="loadImage " type="ST_Delegate" use="optional"/>

 </xsd:complexType>

2.2.15 dialogBoxLauncher (Dialog Box Launcher)

This element specifies a button that is the dialog box launcher control for a ribbon group.

For example, consider a dialog box launcher control, as follows:

96 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Figure 7 : A dialog box launcher control

This is specified using the following XML fragment:

 <group id="customGroup" label="Custom Group">

 <dialogBoxLauncher>

 <button id="button" screentip="Dialog Box Launcher" />

 </dialogBoxLauncher>

 </group>

The following table summarizes the elements that are parents of this element.

Parent Elements

group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_DialogLauncher">

 <xsd:sequence>

 <xsd:element name="button" type="CT_ButtonRegular" minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

2.2.16 documentControls (List of Document -Specific Quick Access Toolbar Controls)

This element specifies the list of controls on the quick access toolbar which are specific to the
containing file.

For example, consider a set of contro ls on the document -specific quick access toolbar, as follows:

Figure 8 : A set of controls on the document - specific quick access toolbar

This is specified using the following XML fragment:

97 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

 <documentControls>

 <control idMso="CalculateNow" />

 <control idMso="HyperlinkInsert" />

 </documentControls>

The following table summarizes the elements that are parents of this element.

Parent Elements

qat (section 2.2.32)

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

control (Quick Access Toolbar Control Clone) 2.2.13

separator (Separator) 2.2.34

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_Qa tItems">

 <xsd:sequence>

 <xsd:choice minOccurs="0" maxOccurs="1000">

 <xsd:element name="control" type="CT_ControlCloneQat"/>

 <xsd:element name="button" type="CT_ButtonRegular"/>

 <xsd:element name="separator" type="CT_Separator"/>

 </xsd:cho ice>

 </xsd:sequence>

 </xsd:complexType>

2.2.17 dropDown (Drop -down Control)

This element specifies a drop -down control that allows users to make a selection from a list of options.
A drop -down control can optionally have buttons after its selection items.

For example, consider a drop -down control, as follows:

Figure 9 : A drop - down control

This is specified using the following XML fragment:

 <dropDown id="dropDown" label="DropDown">

 <item id="item1" label="Item 1" />

 <item id="item2" label="Item 2" />

 <item id="item3" label="Item 3" />

 <button id="button" label="Button..." />

98 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

 </dropDown>

The following table summarizes the elements that are parents of this element.

Parent Elem ents

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

item (Selection Item) 2.2.24

The following table summarizes the attributes of this element.

Att ributes Description

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built - in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanen tly disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to b e called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate sim ple type, as
specified in section 2.3.2 .

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button .

99 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Att ributes Description

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemCount
(getItemCount
callback)

Specifies t he name of a callback function to be called to determine the number of selection
items in this control.

If this attribute is omitted, the control SHOULD display any selection items that are
specified as child elements. If no such items are specified, the c ontrol SHOULD be empty.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount" />

In this example, the GetGalleryItemCount callback function is called when the application
needs to determine the number of items in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemID
(getItemID
callback)

Specifies the name of a callback function to be called to determine the identifier of a
specific dynamically -created selection item, identified by index.

If this attribute is omitted, dynamically -created selection items SHOULD have empty
identifiers.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGal leryItemCount"

 getItemID="GetGalleryItemID" />

In this example, the GetGalleryItemID callback function is called when the application
needs to determine the identifier of a selection item.

The possible values for this attribute are defined by the ST_Del egate simple type, as
specified in section 2.3.2.

getItemImage
(getItemImage
callback)

Specifies the name of a callback function to be called to determine the icon of a specific
dynamically -created selection item, identified by index.

If this attribute is omitted, dynamically -created selection items SHOULD NOT display icons.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"

 getItemImage="GetGalleryItemImage" />

In this example, the GetGalleryItemI mage callback function is called when the
application needs to determine the icon of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemLabel
(getItemLabel
callback)

Specifies the name of a callback function to be called to determine the label of a specific
dynamically -created selection item, identified by index.

If this attribute is omitted, dynamically -created selection items SHOULD NOT display labels.

For example, c onsider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"

 getItemLabel="GetGalleryItemLabel" />

In this example, the GetGalleryItemLabel callback function is called when the application
needs to determine the label of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

100 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Att ributes Description

getItemScreentip
(getItemScreentip
callback)

Specifies the name of a callback function to be called to determine the screen tip of a
specific dynamically -created selection item, identified by index.

If this attribute is omitted, dynamically -created selection items SHOULD use their labels as
their screentips, or display no screentips at all.

For example, consider the following X ML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"

 getItemScreentip="GetGalleryItemScreentip" />

In this example, the GetGalleryItemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getItemSupertip
(getItemSupertip
call back)

Specifies the name of a callback function to be called to determine the supertip of a specific
dynamically -created selection item, identified by index.

If this attribute is omitted, dynamically -created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"

 getItemSupertip="GetGalleryItemSupertip" />

In this example, the GetGalleryItemSupertip callback function is called when the
application needs to de termine the supertip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control auto matically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button .

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback functi on is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip

Specifies the name of a ca llback function to be called to determine the screentip of this
control.

101 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Att ributes Description

callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or displa y
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of t he button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedItemI
D
(getSelectedItemI
D callback)

Specifies the name of a callback function to be called to determine the identifier of the item
to be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragmen t:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"

 getItemID="GetItemID"

 getSelectedItemID="GetGallerySelectedItemID" />

In this example, the GetGallerySelectedItemID callback function is called when the
application needs to determine the sele cted item in the gallery. In this example the callback
function returns one of the identifiers returned by the GetItemID callback function.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSelectedItemI
ndex
(getSelectedItemI
ndex callback)

Specifies the name of a callback function to be called to determine the index of the item to
be selected in this control.

The getSelectedItemID and getSelectedItemIndex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

 <gallery id="gallery" getItemCount="GetGalleryItemCount"

 getSelectedItemIndex="GetGal lerySelectedItemIndex" />

In this example, the GetGallerySelectedItemIndex callback function is called when the
application needs to determine the selected item in the gallery.

The possible values for this attribute are defined by the ST_Delegate simple ty pe, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
displays the icon of this control.

The showImage and getShowImage attributes are mutually e xclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is ca lled when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel Specifies the na me of a callback function to be called to determine whether the application

102 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Att ributes Description

(getShowLabel
callback)

displays the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its l abel.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
cal lback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For ex ample, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button .

The possible values fo r this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVi sible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id , idQ, and idMso attributes are mutuall y exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribu te are defined by the ST_UniqueID simple type, as
specified in section 2.3.13 .

idMso (built - in
control identifier)

Specifies the identifier of a built - in control.

The contents of this attribute a re application -defined.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes

103 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Att ributes Description

MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an ide ntifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI

 xmlns="http://schemas.microsoft.com/office/2006/01/customui"

 xmlns:ex="http://www.example.com">

 <ribbon>

 <tabs>

 <tab idQ="ex:OtherTab" label="Shared Tab">

 <group id="MyGroup" label="My Group">

 é

 </group>

 </tab>

 </tabs>

 </ribbon>

 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If

tha t tab cannot be found, it is created. A new group belonging to this file is added to the
tab .

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14 .

imageMso (built - in
image identifier)

Specifies the identifier of a built - in image to be used as the icon of this control.

The contents of this attribute are application -defined and SHOULD be ignored if not
understood.

The getImage , image , and imageMso attr ibutes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

104 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Att ributes Description

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the built - in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built - in
control to insert
after)

Specifies the identifier of a built - in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom t ab with an identifier of "MyTab" is to be inserted after the
built - in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of co ntrol to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" inse rtAfterQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by t he ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built - in
control to insert
before)

Specifies the identifier of a built - in control that this control is to be inserted before. If the
value of this attribute is not unders tood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order the y are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built - in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

section 2.3.5.

insertBeforeQ Specifies the qualified identifier of a control that this control is to be inserted before. If the

105 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Att ributes Description

(qualified identifier
of control to insert
before)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are spec ified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically .

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7 .

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .

onAction
(onAction callback)

Specifies the name of a callback function to be called when this control is invoked by the
user.

For example, consider the following XML fragment:

 <button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST_Delegate simp le type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD dis play the label of the control as the screentip or display
no screentip at all.

106 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Att ributes Description

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

 size ="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getSho wImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"

 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemImage
(show item image)

Specifies whether this control displays icons on its selection it ems.

If this attribute is omitted, the items' icons SHOULD be shown by default.

For example, consider the following XML fragment:

 <gallery id="gallery" label="Gallery" showItemImage="false" >

 <item id="item1" label="Item 1" />

 <item id="item2" label="Item 1" />

 <item id="item3" label="Item 2" />

 <item id="item4" label="Item 3" />

 </gallery>

This specifies a gallery control that does not show any icons on its selection items.

The possible values for this attribute are defined by the XML schema boolean datatype.

showItemLabel
(show item label)

Specifies whether this control displays labels on its selection items.

If this attribute is omitted, the item's labels SHOULD be shown by default.

For example, consider the following XML fragment:

107 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Att ributes Description

 <gallery id="gallery" label="Gallery" showItemLabel="false" >

 <item id="item1" image="Forest" />

 <item id="item2" image="Desert" />

 <item id="item3" image="Mountain" />

 <item id="item4" image="Ocean" />

 </gallery>

This specifies a gallery control that does not show any labels on its selection items.

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"

 imageMso="HappyFace" />

This sp ecifies a button that has a label , but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString (size
string)

Specifies a st ring whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

 <editBox id="editBox" sizeString="WWWWWWWWWWWWW" />

This specifies an edit box control that is wide enough to display the string
"WWWWWWWWWWWWW".

The possible values for this attribute are defined by the ST_String simple type, as
specified in sec tion 2.3.11.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

108 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Att ributes Description

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="Screentip"

 supertip="This is the supertip string" />

The possible valu es for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string .

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"

 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" v isible="false" />

In this example, the built - in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_DropDownRegular">

 <xsd:complexContent>

 <xsd:extension base="CT_Control">

 <xsd:sequence>

 <xsd:element name="item" type="CT_Item" minOccurs="0" maxOccurs="1000"/>

 <xsd:element name="button" type="CT_ButtonRegular" minO ccurs="0" maxOccurs="16"/>

 </xsd:sequence>

 <xsd:attributeGroup ref="AG_Action"/>

 <xsd:attributeGroup ref="AG_Enabled"/>

 <xsd:attributeGroup ref="AG_Image"/>

 <xsd:attributeGroup ref="AG_DropDownAttributes"/>

 <xsd:attribute name="getSelectedItemID" type="ST_Delegate" use="optional"/>

 <xsd:attribute name="getSelectedItemIndex" type="ST_Delegate" use="optional"/>

 <xsd:attribute name="showItemLabel" type="xsd:boolean" use="optional"/>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

109 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

2.2.18 dynamicMenu (Unsized Dynamic Menu)

This element specifies a dynamic menu control that, because of its location, cannot have its anchor
size changed. The size attrib ute is not present. It otherwise behaves identically to the regular

dynamicMenu element, as specified in section 2.2.19 .

The following table summarizes the elements that are parents of this elemen t.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu

(section 2.2.27); officeMenu (section 2.2.31)

The following table summarizes the attributes of this element.

Attributes Description

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"

 description="This is a verbose description that describes

 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type , as
specified in section 2.3.8 .

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specifie d, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built - in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getC ontent
(getContent
callback)

Specifies the name of a callback function to be called when the application needs to
determine the contents of the control.

For example, consider a dynamic menu control, as follows:

110 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

This is specified using the following XML fragment:

 <dynamicMenu id="dynamic" label="Dynamic Menu"

 getContent="GetMenuContent" />

The GetMenuContent callback function is called when the menu is dropped, and in this
case would return a string with the following XML:

 <menu

 xmlns="http://schemas.m icrosoft.com/office/2006/01/customui">

 <button id="button1" label="Button 1" />

 <button id="button2" label="Button 2" />

 <button id="button3" label="Button 3" />

 </menu>

The possible values for this attribute are defined by the ST_Delegate simple typ e, as
specified in section 2.3.2 .

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescriptio n" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in s ection 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the cont rol SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this contro l.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

111 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="button" getImage="GetButtonImage" />

In this examp le, the GetButtonImage callback function is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attrib ute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the nam e of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <butt on id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute i s
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonS creentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

112 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whet her the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML frag ment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getS upertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVis ible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

113 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13 .

idMso (built - in
control identifier)

Specifies the identifier of a built - in control.

The contents of this attribute are application -defined.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for thi s attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used t o reference controls or containers created by other Custom
UI documents.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI

 xmlns="htt p://schemas.microsoft.com/office/2006/01/customui"

 xmlns:ex="http://www.example.com">

 <ribbon>

 <tabs>

 <tab idQ="ex:OtherTab" label="Shared Tab">

 <group id="MyGroup" label="My Group">

 é

 </group>

 </tab>

 </tabs >

 </ribbon>

 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If

that tab cannot be found, it is created. A new group be longing to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

image (custom
image identifier)

Specifies th e relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage , image , and imageMso attributes are mutually exclu sive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

114 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14 .

imageMso (built - in
image identifier)

Specifies the identifier of a built - in image that is used as the icon of this control.

The contents of this attribute are application -defined and SHOULD be ignored if not
understood.

The getImage , image , and imageMso attributes are mutually exclusive. If no ne of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that uses the built - in image with an identifier of "Bold".

The possib le values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built - in
control to insert
after)

Specifies the identifier of a built - in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the e xisting set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built - in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. I f none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom T ab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built - in
control to insert
before)

Specifies the identifier of a built - in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For ex ample, consider the following XML fragment:

115 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built - in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be insert ed before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
app ended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifie r of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on d rop)

Specifies whether this control SHOULD invalidate its contents and re -query for them when
the user opens its drop -down menu.

If this attribute is omitted, its value SHOULD default to false.

For example, consider the following XML fragment:

 <comboBox id="comboBox" getItemCount="GetComboBoxItemCount"

 getItemLabel="GetComboBoxItemLabel"

 invalidateContentOnDrop="true" />

In this example, this combo box clears out its items and re -calls the
GetComboBoxItemCount and GetComboBoxItemLabel callback functio ns to populate
its contents each time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeyti p attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7 .

label (label) Spec ifies a string to be used as the label for this control.

116 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label= "Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the scr eentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="This is the screenti p" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusiv e. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"

 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

117 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

showLabel (show
label)

Specifies whether this control SHOULD display its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"

 imageMso="HappyFace" />

This sp ecifies a button that has a label , but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="Screentip"

 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String sim ple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string .

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"

 onAction="ButtonClicked" />

This specifies a button with a tag val ue of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

118 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built - in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_DynamicMen uRegular">

 <xsd:complexContent>

 <xsd:extension base="CT_ControlBase">

 <xsd:attributeGroup ref="AG_Description"/>

 <xsd:attributeGroup ref="AG_IDAttributes"/>

 <xsd:attributeGroup ref="AG_GetContentAttributes"/>

 <xsd:attributeGroup ref="AG_DynamicContentAttributes"/>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

2.2.19 dynamicMenu (Dynamic Menu)

This element specifies a dynamic menu control that populates its c ontents dynamically.

For example, consider a dynamic menu control, as follows:

Figure 10 : A dynamic menu control

This is specified using the following XML fragment:

 <dynamicMenu id="dynamic" label="Dynamic Menu" getContent="Get MenuContent" />

The GetMenuContent callback function is called when the menu is dropped, and in this case would

return a string with the following XML:

 <menu xmlns="http://schemas.microsoft.com/office/2006/01/customui">

 <button id="button1" label="Button 1" />

 <button id="button2" label="Button 2" />

 <button id="button3" label="Button 3" />

 </menu>

The following table summarizes the elements that are parents of this element.

119 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this element.

Attributes Description

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detaile d text.

For example, consider a button with a detailed description, as follows:

This is specified using the following XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"

 description="This is a verbose description that describes

 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8 .

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built - in control that would otherwise be d isabled
by the application.

For example, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled at tribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getContent
(getContent
callback)

Specifies the name of a callback function to be called when the application needs to
determine the conten ts of the control.

For example, consider a dynamic menu control, as follows:

This is specified using the following XML fragment:

 <dynamicMenu id="dynamic" label="Dynamic Menu"

 getContent="GetMenuContent" />

The GetMenuContent callback function is call ed when the menu is dropped, and in this

120 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

case would return a string with the following XML:

 <menu

 xmlns="http://schemas.microsoft.com/office/2006/01/customui">

 <button id="button1" label="Button 1" />

 <button id="button2" label="Button 2" />

 <button id="button3" label="Button 3" />

 </menu>

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2 .

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display a ny detailed text.

For example, consider the following XML fragment:

 <button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed desc ription of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnable d" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2 .

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback func tion is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
spec ified, the application SHOULD generate a KeyTip for the control automatically.

12 1 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

For example, consider the following XML fragment:

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the ap plication
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHO ULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is ca lled when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callba ck function to be called to determine whether the application
SHOULD display the icon of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisib le callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

122 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in sec tion 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD defau lt to the normal size.

For example, consider the following XML fragment:

 <button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possi ble values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identi fier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id , idQ , and idMso attributes are mutually exclu sive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

123 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attrib ute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13 .

idMso (built - in
control identifier)

Specifies the identifier of a built - in control.

The contents of this attribute are application -defined.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an i dentifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <customUI

 xmlns="http://schemas.microsoft.com/office/2006/01/customui"

 xmlns:ex="http://www.example.com">

 <ribbon>

 <tabs>

 <tab idQ="ex:OtherTab" label="Shared Tab">

 <group id="MyGroup" label="My Group">

 é

 </group>

 </tab>

 </tabs>

 </ribbon>

 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab" . If

that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" image="ForestPic" />

124 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14 .

imageMso (built - in
image identifier)

Specifies the identifier of a built - in image which SHOULD be used as the icon of this control.

The contents of this attribute are application -defined and SHOULD be ignored if not
understood.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom butto n that SHOULD use the built - in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built - in
control to insert
after)

Specifies the identifier of a built - in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab" >

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built - in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3. 5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , inser tAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the f ollowing XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built - in
control to insert
before)

Specifies the identifier of a built - in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to th e existing set of controls, in the order they are defined in the XML.

125 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built - in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specif ies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" inse rtBeforeQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control SHOULD invalidate its contents and re -query for them when
the user opens its drop -down menu.

If this attribute is o mitted, its value SHOULD default to false.

For example, consider the following XML fragment:

 <comboBox id="comboBox" getItemCount="GetComboBoxItemCount"

 getItemLabel="GetComboBoxItemLabel"

 invalidateContentOnDrop="true" />

In this example, this combo b ox clears out its items and re -calls the
GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For exa mple, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7 .

126 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclus ive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

 <button id="button" showImage="false"

 label="Button with no icon" />

127 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

The possible valu es for this attribute are defined by the XML schema boolean datatype.

showLabel (show
label)

Specifies whether this control SHOULD display its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "larg e".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

 <button id="button" label="Label" showLabel="false"

 imageMso="HappyFace" />

This specifies a button that has a label , but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size) Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

This is s pecified using the following XML fragment:

 <toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10 .

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a con trol with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="Screentip"

128 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string .

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"

 onAction="Bu ttonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragmen t:

 <tab idMso="TabHome" visible="false" />

In this example, the built - in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_DynamicMenu">

 <xsd:complexContent>

 <xsd:extension base="CT_DynamicMenuRegular">

 <xsd:attributeGroup ref="AG_SizeAttributes"/>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

2.2.20 editB ox (Edit Box)

This element specifies an edit box control that allows a user to enter a string of text.

For example, consider an edit box control, as follows:

Figure 11 : An edit box control

This is specified using the following XML fragment:

129 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

 <editBox id="editBox" label="Edit Box" />

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this element.

Attributes Description

enabled (Enabled
State)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built - in control that would otherwise be disabled
by the application.

For ex ample, consider the following XML fragment:

 <button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

 <button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2 .

getImage
(getImage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getImage="GetButtonImage" />

In this example, the GetButtonImage callback function is called when the application
needs to determine the icon of the button .

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of
this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.

For e xample, consider the following XML fragment:

130 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel
callback)

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback functi on is called when the application needs
to determine the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getScreentip
(getScreentip
callback)

Specifies the name of a ca llback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or displa y
no screentip at all.

For example, consider the following XML fragment:

 <button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of t he button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowImage
(getShowImage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

 <button id="button" getShowImage="IsButtonImageVisible" />

In this example, the IsButtonImageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLab el attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

131 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsBu ttonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

 <button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The po ssible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getText (getText
callback)

Specifies the name of a callback function to be called to determine the text that SHOULD be
displayed in the control.

For example, consider the following XML fragment:

 <editBox id="editBox" getText="GetEditBoxText" />

In this example, the GetEditBoxText callback function is called when the application needs
to determine the text to display in the control.

The possible val ues for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonV isible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id , idQ , and idMso attributes are mutu ally exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <button id="MyButton" label="Button" />

132 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

This specifies a custom button control with an identifier of "MyButton".

The possible values for t his attribute are defined by the ST_UniqueID simple type, as
specified in section 2.3.13 .

idMso (built - in
control identifier)

Specifies the identifier of a built - in control.

The contents of this attribute are application -defined.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

 <control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
UI documents.

The id , idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, co nsider the following XML fragment:

 <customUI

 xmlns="http://schemas.microsoft.com/office/2006/01/customui"

 xmlns:ex="http://www.example.com">

 <ribbon>

 <tabs>

 <tab idQ="ex:OtherTab" label="Shared Tab">

 <group id="MyGroup" label="My Gr oup">

 é

 </group>

 </tab>

 </tabs>

 </ribbon>

 </customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture t hat resides locally within the
containing file.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="butto n" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
sect ion 2.3.14 .

133 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

imageMso (built - in
image identifier)

Specifies the identifier of a built - in image which SHOULD be used as the icon of this control.

The contents of this attribute are application -defi ned and SHOULD be ignored if not
understood.

The getImage , image , and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

 <button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built - in image with an identifier of
"Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso
(identifier of built - in
control to insert
after)

Specifies the identifier of a built - in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBef oreMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragm ent:

 <tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built - in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
append ed to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the

custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

insertBeforeMso
(identifier of built - in
control to insert
before)

Specifies the identifier of a built - in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertB eforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fra gment:

 <tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">

 é

134 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built - in tab with an identifier of "TabHome".

The possible values for this attribut e are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attri bute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls , in the order they are defined in the XML.

For example, consider the following XML fragment:

 <tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">

 é
 </tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip) Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7 .

label (label) Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fr agment:

 <button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .

maxLength
(maximum input
string length)

Specifies an integer to be used as the maximum length of a string that can be entered
into the control.

If the maxLength attribute is omitted, the length of the input string SHOULD NOT be
limited except by application -specific constraints.

For example, consider the following XML fragment:

135 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <editBox id="editBox" maxLength="10" />

This specifies an edit box control that can only accept strings up to 10 characters in
length.

The possible values for this attribute are defined by the ST_StringLength simple type, as
specified in section 2.3.12 .

onChange
(onChange
callback)

Specifies the name of a callback function to be called when the text in the control has been
changed by the user.

For example, consider the following XML fragment:

 <editBox id="editBox" onChange="EditBoxTextChanged" />

This specifies an edit box control that calls the EditBoxTextChanged callback functi on
when the user inputs a text string .

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

screentip
(screentip)

Specifies a string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

This is specified using the following XML fragment:

 <button id="button" imageMso="HappyFace" label="Button"

 size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showImage (show
image)

Specifies whether this control displays an icon.

The showImage and getShowImage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

This is specified using the following XML fragment:

136 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

 <button id="button" showImage="false"

 label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean dat atype.

showLabel (Show
Label)

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider th e following XML fragment:

 <button id="button" label="Label" showLabel="false"

 imageMso="HappyFace" />

This specifies a button that has a label , but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString (size
string)

Specifies a string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the applicat ion SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

 <editBox id="editBox" sizeString="WWWWWWWWWWWWW" />

This specifies an edit box control that is wide enough to display the string
"WWWWWWWWWWWWW".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

supertip (supertip) Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

This is specified using the following XML fragment:

 <button id="button" image Mso="HappyFace" label="Button"

 size="large" screentip="Screentip"

 supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as

137 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Description

specified in section 2.3.11.

tag (tag) Specifies an arbitra ry string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string .

For example, consider the following XML fragment:

 <button id="button" label="Button" tag="123456"

 onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible value s for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

 <tab idMso="TabHome" visible="false" />

In this example, the built - in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

 <xsd:complexType name="CT_EditBox">

 <xsd:complexContent>

 <xsd:ext ension base="CT_Control">

 <xsd:attributeGroup ref="AG_Enabled"/>

 <xsd:attributeGroup ref="AG_Image"/>

 <xsd:attribute name="maxLength" type="ST_StringLength" use="optional"/>

 <xsd:attribute name="getText" type="ST_Delegate" use="optional"/>

 <xsd:attribute name="onChange" type="ST_Delegate" use="optional"/>

 <xsd:attribute name="sizeString" type="ST_String" use="optional"/>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

2.2.21 gallery (Gallery)

This element specifies a gallery control, which displays a drop -down grid of items that the user can
select from. A gallery can optionally have buttons following its selection items.

For example, consider a gallery control that shows a selection of picture s, as follows:

138 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Figure 12 : A gallery control

This is specified using the following XML fragment:

 <gallery id="gallery" label="Gallery" itemWidth="88" itemHeight="68"

 size="large" imageMso="HappyFace" >

 <item id="item1" image="Desert" />

 <item id="item2" image="Forest" />

 <item id="item3" image="Toucan" />

 <item id="item4" image="Tree" />

 </gallery>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section

button (Unsized Button) 2.2.3

item (Selection Item) 2.2.24

The following table summarizes the attributes of this element.

Attributes Descrip tion

columns (column
count)

Specifies the number of columns that the gallery's items SHOULD be arranged into.

If the columns attribute is omitted, the application SHOULD choose the number of columns
automatically based on the number of items.

For example, consider a gallery control with six items arranged into two columns, as
follows:

139 / 553

[MS -CUSTOMUI] - v20180828
Custom UI XML Markup Specification
Copyright © 2018 Microsoft Corporation
Release: August 28, 2018

Attributes Descrip tion

This is specified using the following XML fragment:

 <gallery id="gallery" label="Gallery" columns="2"

 size="large" imageMso="HappyFace" >

 <item id="item1" image="Desert " />

 <item id="item2" image="Forest" />

 <item id="item3" image="Toucan" />

 <item id="item4" image="Tree" />

 <item id="item5" image="Flowers" />

 <item id="item6" image="Whale" />

 </gallery>

The possible values for this attribute are defined by the ST_GalleryRowColumnCount
simple type, as specified in section 2.3.4 .

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

This is specified using the foll owing XML fragment:

 <button id="button" label="Button" imageMso="HappyFace"

 description="This is a verbose description that describes

 the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8 .

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnab led and enabled attributes are mutually exclusive. If neither attribute is

