[MS -CUSTOMUI:
Custom Ul XML Markup Specification

Intellectual Property Rights Notice for Open Specifications Documentation

A Technical Documentation. Mi crosoft publishes Open Specifications do
documentationo) for protocols, file formats, data portabi
support. Additionally, overview documents cover inter -protocol relationships and interactions.

A co pyrights . This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations
that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your i mplementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also
applies to any documents that are referenced in the Open Specifications documentation.
No Trade Secrets . Microsoft does not claim any trade secret rights in this documentation.
Patents . Microsoft has patents that might cover your implementations of the technologies
described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
thi s documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promis e or the Microsoft Community Promise . If you would prefer a written license,
or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Communit y Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com
License Programs . To see all of the protocols in scope under a specific license program and the
associated patents, visitt he Patent Map .
Trademarks . The names of companies and products contained in this documentation might be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks
A Fictitious Names . The example companies, organizations, products, domain names, em ail
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferre d.

> >

>

>

Reservation of Rights . All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools . The Open Specifications documentation does not require th e use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access

to Microsoft programming tools and environments, you are free to take advantage of them. Certain

Open Specifications document s are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For question s and support, please contact dochelp@microsoft.com

1/ 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

c
I

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://msdn.microsoft.com/en-us/openspecifications/dn750984
http://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

Revision Summary

Revision Revision

Date History Class Comments

1/15/2009 1.0 Major Initial Availability

7/13/2009 1.01 Major Revised and edited the technical content

8/28/2009 1.02 Editorial Revised and edited the technical content

11/6/2009 1.03 Editorial Revised and edited the technical content

2/19/2010 2.0 Editorial Revised and edited the technical content

3/31/2010 2.01 Editorial Revised and edited the technical content

4/30/2010 2.02 Editorial Revised and edited the technical content

6/7/2010 2.03 Editorial Revised and edited the technical content

6/29/2010 2.04 Editorial Changed language and formatting in the technical content.

2/23/2010 204 None No ch_anges to the meaning, language, or formatting of the
technical content.

9/27/2010 204 None No ch_anges to the meaning, language, or formatting of the
technical content.

11/15/2010 204 None No ch_anges to the meaning, language, or formatting of the
technical content.

12/17/2010 204 None No ch_anges to the meaning, language, or formatting of the
technical content.

3/18/2011 204 None No ch_anges to the meaning, language, or formatting of the
technical content.

6/10/2011 204 None No ch_anges to the meaning, language, or formatting of the
technical content.

1/20/2012 25 Minor Clarified the meaning of the technical content.

4/11/2012 25 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/16/2012 25 None No ch_anges to the meaning, language, or formatting of the
technical content.

10/8/2012 25 None No ch_anges to the meaning, language, or formatting of the
technical content.

2/11/2013 25 None No ch_anges to the meaning, language, or formatting of the
technical content.

2/30/2013 25 None No Chgnges to the meaning, language, or formatting of the
tech nical content.

11/18/2013 25 None No changes to the meaning, language, or formatting of the
technical content.

2/10/2014 25 None No changes to the meaning, language, or formatting of the
technical content.

4/30/2014 25 None

No changes to the meaning, language, or formatting of the

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

2 /522

Revision Revision

Date History Class Comments
technical content.

7/31/2014 2.6 Minor Clarified the meaning of the technical content.

10/30/2014 3.0 Major Significantly changed the technical content.

3/16/2015 4.0 Major Significantly changed the technical content.

9/4/2015 4.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/15/2016 4.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

9/14/2016 4.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

10/17/2016 4.0 None No ch_anges to the meaning, language, or formatting of the
technical content.

7/10/2017 5.0 Major Significantly changed the technical content.

9/19/2017 6.0 Major Significantly changed the technical content.

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

3/ 522

Table of Contents

O 11 Yo [od 1T PR 6
1.1 GlOSSAIY vveiiiciiii i ciiiieis e ervrree e arreaeenans 6
1.2 S =] =] (ot 6

121 Normative REfEreNCeS ..o e e 7
122 Informative ReferenCes .ot e 7

2 CUSIOM UL s e e e 8

2.1 PartS oot s e 8
211 Quick Access Toolbar Customizations Part ccciiiiiiiiiiiiiiies e 8
2.1.2 Ribbon Extensibility Part —cocoiiiiiiiiiiies s e 9

2.2 =T g1 o 10
221 box (Box Grouping CONtaiNEr) .ooieiiciiiiiciieciiieeee e e aeas 10
222 button (BULtON) eeeeiiciis s aeeee e ea e 14
2.2.3 button (Unsized BUtON) ooiiiiiiiiciieviis e e e e 24
2.2.4 button (Button Inside of a Split BUtON) .o e 33
225 buttonGroup (Button Grouping Container) 42
2.2.6 checkBox (Check BOX) ..ccoooevevieeeniieeiieeninenn 45
227 comboBoOx (Combo BOX) ..oovcvveiieeiiienieeineee 55
2.2.8 command (Repurposed Command) ..o e 66
229 commands (List of Repurposed COommands) .o e 68
2.2.10 contextualTabs (List of Contextual Tab SetsS) . e 68
2211 control (Unsized Control CIONE) ooiiiiiiiiirciiiiiiins e ... 69
2212 control (Control CIONE) oo e e 77
2.2.13 control (Quick Access Toolbar Control Clone) i e 86
2.2.14 customUI (Custom Ul Document ROO) oo e 95
2.2.15 dialogBoxLauncher (Dialog Box Launcher) i e 96
2.2.16 documentControls (List of Document - Specific Quick Access Toolbar Controls) . 97
2217 dropDown (Drop -down CONtrol) ..o e . 98
2.2.18 dynamicMenu (Unsized Dynamic Menu) 110
2.2.19 dyna micMenu (Dynamic Menu) —cccccoeeeeineene . 119
2.2.20 editBox (Edit BOX) ...ooovviieeeiiieeeiiieee 130
2221 gallery (Gallery) oo e ereen e 139
2222 gallery (Unsized Gallery) ooiiiiiiiie s areeeee 155
2.2.23 (o (01010 I (€] (0 U] o) PPV UPRPPR 169
2224 item (Selection ITEM) s e e 177
2.2.25 labelControl (Text Label) .ot e 180
2.2.26 menu (Unsized MENU) oo e 188
2.2.27 menu (Menu with Title) .ot e 197
2.2.28 MENU (MENU) oot e aee tereee s e e e e 207
2.2.29 menu (Dynamic Menu Root XML Element) s e 218
2.2.30 menuSeparator (Menu SEParator) . e 220
2231 officeMenu (Office MENU) oo e e 223
2.2.32 gat (Quick AcC €SS TOOIDAr) oo e e 224
2.2.33 rbbon (RIDDON) s i e 225
2.2.34 separator (SEePArator) i e aeeeee e 226
2.2.35 sharedCon trols (List of Shared Quick Access Toolbar Controls) ccevieieennen, 229
2.2.36 splitButton (Unsized Split BUttON) .o e 230
2.2.37 splitButton (Split Button with Title) s e 238
2.2.38 splitButton (Split BUtON) s e eeriees 247
2.2.39 tab (Tab) ..o . 256
2.2.40 tabs (List of Tabs) 260
2241 tabSet (Contextual T @b Set) ..ot e e 261
2242 toggleButton (Unsized Toggle BUttOn) oo e 262
2243 toggleButton (Toggle BUtton) — ooiiiiiies s e 272
2244 toggleButton (Toggle Button Inside of a Split Button) . e, 282

4/ 522

[MS-CUSTOMUI] - v20170919
Custom Ul XML Markup Specification

Copyright ©

2017 Microsoft Corporation

Release: September 19, 2017

2.3 SIMPIE TYPES oot s eeeaa e e e e araea e ..291
23.1 ST _BoxStyle (BOX Styl€) vt v aereaee 291
23.2 ST _Delegate (Call back Function Name) ... e 291
2.3.3 ST_GalleryltemWidthHeight (Gallery Item Width or Height) ..., 294
2.3.4 ST_GalleryRowColumnCount (Gallery Row or Column Count) cccoviiieeiiieeene 294
2.35 ST _ID (Control ID) cocvecieciecveevieriis v aeeeaeee e 295
2.3.6 ST _ltemSize (Menu emM SizZ€) oot e .. 296
2.3.7 ST_Keytip (KE YHP) oeieiiiiieiiiiiiiiieiiiis et sieees eeee e e 296
2.3.8 ST _LongString (LONG StrNG) oo e e 297
2.3.9 ST_QID (Qualified Control ID) oo v e 297
2.3.10 ST _Size (C ontrol SIiZ€) oot e eeeeraee e 299
23.11 ST_String (ShOrt String) oo et aerreaee 300
23.12 ST_StringLength (String Length) oo e .301
2.3.13 ST _UniquelD (Custom Control ID) coioiiiicevceiiie e 301
2.3.14 ST_Uri (Image Relationship ID) .oiiiiiiiiiiies e .. 302

3 Appendix A: Custom Ul Control ID Tables e e 303

3.1 IAMSO TabIES .o e e ..303
3.1.1 WOId 2007 it eeree s eareesee e s 303
3.1.2 (=] 2 0 O 357
3.1.3 PowerPoint 2007 i e aerree e 392

3.2 IMageMSO TabIE .o e e s 418

4 Appendix B: Product Behavior s e ereeaaees 521
5 Change TraCkiNg oo et eeeasiee e sneeeaaee e .. 522
LT 1T 1= G PP 523
5/ 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

1 Introduction

In creating an interoperable implementation, it is helpful to understand specific implementation

choice s made by other products implementing the same standard. For example, portions of the
standard may provide only general guidance, leaving specific implementation choices up to the
application implementer; in some circumstances it may be helpful for other i mplementers to
understand those choices.

The information contained in this document provides information about how to implement Ul

customization in the context of ECMA -376 Office Open XML File Formats, as described in ECMA-376] .
1.1 Glossary

This document uses the following terms:

add -in : Supplemental functionality that is provided by an external application or macro to extend
the capabilities of an application.

KeyTip : Asmall, pop -up window that appears over commands on the ribbon when users press the
ALT key. By pressing the key that is displayed in a KeyTip, users can execute the command that
is associated with the KeyTip.

macro : A setofi nstructions that are recorded or written, and then typically saved to a file. When a
macro is run, all of the instructions are performed automatically.

XML fragment : Lines of text that adhere to XML tag rules, as described in XML] , but do not have
a Document Type Definition (DTD) or schema, processing instructions, or any other header
information.

XML namespace : A collection of names that is used to identify elements, types, and attributes in
XML documents identified in a URI reference RFC3986] . A combination of XML namespace and
local name allows XML documents to use elements, types, and attributes that have the same
names but come from different sources. For more information, see XMLNS -2ED] .

XML namespace prefix : An abbreviated form of an XML namespace , as described in [XML].

XML schema : A description of a type of XML document that is typically expressed in terms of
constraints on the structure and content of documents of that type, in addition to the basic
syntax constraints that are imposed by XML itself. An XML schema provides a view of a
document type at a relatively high level of abstraction.

XML schema definition (XSD) : The World Wide Web Consortium (W3C) standard language that
is used in defining XML schemas. Schemas are useful for enforcing s tructure and constraining
the types of data that can be used validly within other XML documents. XML schema definition
refers to the fully specified and currently recommended standard for use in authoring XML
schemas

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined
in [REC2119] . All statements of optional behavior use either MAY, SHOULD, or SHO ULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the
most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata .

6/ 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=90598
https://go.microsoft.com/fwlink/?LinkId=90453
https://go.microsoft.com/fwlink/?LinkId=90602
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com . We will
assist you in finding the relevant information.

[ECMA-376] ECMA International, "Office Open XML File Formats", 1st Edition, ECMA -376, December
2006, http://ww w.ecma -international.org/publications/standards/Ecma -376.htm

[MS - CUSTOMUI2] Microsoft Corporation, " Custom Ul XML Markup Version 2 Specification

[RFC2119] Bradner, S., "K ey words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.rfc _ -editor.org/rfc/rfc2119.txt

[XMLNS] Bray, T., Hollander, D., Layman, A., et al., Eds., "N amespaces in XML 1.0 (Third Edition)",
W3C Recommendation, December 2009, http://www.w3.0rg/TR/2009/REC -xml -names -20091208/

[XMLSCHEMAL1] Thompson, H., Beech, D., Maloney, M., and Mendelsohn, N., Eds., "XML Schema Part
1: Structures”, W3C Recommendation, May 2001, http://www.w3.0rg/TR/2001/REC -xmlschema -1-
20010502/

[XMLSCHEMAZ] Biron, P.V., Ed. and Malhotra, A., Ed., "XML Schema Part 2: Datatypes”, W3C
Recommendation, May 2001, http://www.w3.0rg/TR/2001/REC -xmlschema -2-20010502/

1.2.2 Informative References

None.

71522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-CUSTOMUI2%5d.pdf#Section_bad56c217b1541bcaf328b5afe6e922e
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=191840
https://go.microsoft.com/fwlink/?LinkId=90608
https://go.microsoft.com/fwlink/?LinkId=90608
https://go.microsoft.com/fwlink/?LinkId=90610

2 Custom Ul

The subordinate clauses specify the semantics for the Custom Ul XML markup contained within the
ECMA-376 Office Open XML File Formats, as specified in ECMA-376] . These semantics describe
customization of the Ul interface. Examples in the following clauses highlight customizations in the
context of the Microsoft Office Fluent interface (Ul) but the concepts extend naturally to any user
interface.

Customizat ion of the Ul is accomplished via the addition of parts containing Custom Ul XML markup to
the containing document package.

2.1 Parts

The parts described in the subordinate sections detail the additional part types utilized by CustomUl in
an ECMA - 376 Office Open XML File Formats ECMA-376] file.

2.1.1 Quick Access Toolbar Customizations Part

Content applica tion/xml

Type:

Root http://schemas.microsoft.com/office/2006/01/customui

Namespace:

Source http://schemas.microsoft.com/office/2006/relationships/ui/userCustomization

Relationship:

The syntax of the structures contained in this part uses XML schema definition (XSD) , as specified

in [XMLSCHEMA1] and [XMLSCHEMAZ?] .

This specification defines and references various XML namespaces by using the mechanisms
specified in [XMLNS] .

An instance of this part type contains information about the quick access toolbar customizations
specific to the containing package.

For example, a user can customize the quick access toolbar for his WordProcessingML document to
contain the Ul controls that they commonly use.

A package is permitted to contain at most one Quick Access Toolbar Customizations part, and that
part is the target of a relationship in the package -relationship item for the document.

For example, the following package part -relationship item contains a relationship to a Quick Access
Toolbar Customizations part, which is stored in the ZIP item /userCustomization/customUl.xml:

<Rel ationships xmlns="¢&">

<Relationship Id="rld2"

Type="http://é/ 2006/ relationships/ui/userCustomization"
Target= "/userCustomization/customUl.xml" />

</Relationships>

The root element for a part of this content type is customuUl

For example, the following Quick Access Toolbar Customizations content markup specifies that the
control with identifier "SpellingAndGrammar" is to be added to the quick access toolbar for the
package:

<mso:customUl xmIns:mso="http://schemas.microsoft.com/office/2006/01/customui">
<mso:ribbon>

8/ 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=90608
https://go.microsoft.com/fwlink/?LinkId=90610
https://go.microsoft.com/fwlink/?LinkId=191840

<mso:qat>

<mso:documentControls>

<mso:control idQ="mso:SpellingAndGrammar" visible ="true" />
</mso:documentControls>

</mso:gat>

</mso:ribbon>

</mso:customUI>

A Quick Access Toolbar Customizations part is located within the package containing the source
relationship. Expressed syntactically, the TargetMode attribute of the Relationship element is
"Internal”.

A Quick Access Toolbar Customizations part does not have implicit or explicit relationships to any
other part defined by ECMA -376 Office Open XML File Formats, as specified in ECMA-376] .

2.1.2 Ribbon Extensibility Part

Content application/xml

Type:

Root http://schemas.microsoft.com/office/2006/01/customui

Namespace:

Source http://schemas.microsoft.com/office/2006/relationships/ui/extensibility

Relationship:

The syntax of the structures contained in this part uses XML schema definition (XSD) , as specified

in [XMLSCHEMA1] and [XMLSCHEMAZ?] .

This specification defines and references various XML namespaces by using the mechanisms
specified in [XMLNS] .

An instance of this part type contains information about the ribbon customizations specific to the
containing pack age.

For example, a SpreadsheetML document that represents a timecard could contain custom Ul controls
to guide the user in filling out the timecard.

A package is permitted to contain at most one Ribbon Extensibility part, and that part is the target of
a relationship in the package -relationship item for the document.

For example, the following package part -relationship item contains a relationship to a Ribbon
Extensibility part, which is stored in the ZIP item /customUI/customUl.xml:

<Relationships xmIns=" e" >
<Relationship Id="rld5"
Type="http://é/ 2006/ relationships/ui/extensibility"

Target="/customUl/customUl.xml" />
</Relationships>

The root element for a part of this content type is customuUl

For example, the following Ribbon Extensibility content mark up specifies that the ribbon tab with
identifier "TabHome" is to be hidden for the containing package:

<customUI xmiIns="http://schemas.microsoft.com/office/2006/01/customui">
<ribbon>

<tabs>

<tab idMso="TabHome" visible="false" />

</tabs>

</ribbon>

9/ 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

https://go.microsoft.com/fwlink/?LinkId=200054
https://go.microsoft.com/fwlink/?LinkId=90608
https://go.microsoft.com/fwlink/?LinkId=90610
https://go.microsoft.com/fwlink/?LinkId=191840

</customUlI>

A Ribbon Extensibility part is located within the package containing the source relationship. Expressed
syntactically, the TargetMode attribute of the Relationship element is "Internal”.

A Ribbon Extensibility part is permitted to have explicit relationships to the following parts defined by
ECMA- 376 Office Open XML File Formats, as specified in ECMA-376] :

A Image Part, as specified in [ECMA -376] Part 1 section15.2.13.

2.2 Elements

A Custom Ul document contains customizations of an application's Ul. Customizations are mainly of
two types:

A Modifications of the application's built -in Ul, such as hiding or disabling built -in Ul controls or
repurposing command actions.

A Creat ion of custom Ul controls, such as a custom ribbon tab, menu item, or quick access
toolbar button.

For example, consider the following Custom Ul document:

<customUI xmIns="http://schemas.microsoft.com/office/2006/01/customui">
<commands>
<command idMso="Bold" enabled="false" />
</commands>
<ribbon>
<tabs>
<tab idMso="TabHome" visible="false" />
<tab id="CustomTab" label="Custom Tab">
<group id="CustomGroup" label="Custom Group">

<button id="CustomButton " label="Custom Button"
size="large" imageMso="HappyFace" onAction="OnButtonClick" />
</group>
</tab>
</tabs >
</ribbon>

</customUI>

This example disables the command with an identifier of "Bold", hides the ribbon tab with an identifier
of "TabHome", and creates a new custom ribbon tab with a custom button in it.

The full XML Schema Definition of the XML Schema fragments listed in this section is defined in
Appendix A of [MS-CUSTOMUI2] .

2.2.1 box (Box Grouping Container)

This element specifies a grouping container control that can be used to align controls vertically or
horizontally. Box elements can be nested to create complex Ul layouts.

For example, consider a group of controls that are laid out horizontally, as follows:

10 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

https://go.microsoft.com/fwlink/?LinkId=200054
%5bMS-CUSTOMUI2%5d.pdf#Section_bad56c217b1541bcaf328b5afe6e922e

2 Button 1 23 Buttan 2

Custam Group
Figure 1: Controls grouped horizontally

This layout is specified using the following XML fragment

<box id="box" boxStyle="horizontal">
<button id="button1" label="Button 1" imageMso="HappyFace" />
<button id="button2" label="Button 2" imageMso="HappyFace" />
</box>

This is contrasted to the def ault vertical layout that is used if the box element is not specified.

The following table summarizes the elements that are parents of this element.

Parent Elements Section
box 221
group 2.2.23

The following table summarizes the child elements of this element.

Child Elements Section
box (Box Grouping Container) 221
button (Button) 222
buttonGroup (Button Grouping Container) 2.25
checkBox (Check Box) 2.2.6
comboBox (Combo Box) 2.2.7
control (Control Clone) 2.2.12
dropDown (Drop -down Control) 2.2.17
dynamicMenu (Dynamic Menu) 2.2.19
editBox (Edit Box) 2.2.20
gallery (Gallery) 2.2.21
labelControl (Text Label) 2.2.25
menu (Menu) 2.2.28
splitButton (Split Button) 2.2.38
toggleButton (Toggle Button) 2.2.43

The following table summarizes the attributes of this element.

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

11 / 522

Attributes

Description

boxStyle (box
style)

Specifies the layout direction for the child controls inside of the box element.

If this attribute is omitted, the child controls SHOULD be laid out horizontally.

For example, consider a group of controls to be laid out vertically. This is specified using the
following XML:
<box id="box" boxStyle="vertical">
é
</box>

The possible values for this attribute are defined by the
specified in section 2.3.1 .

ST_BoxStyle simple type, as

getVisible
(getV isible
callback)

Specifies the name of a callback function that is called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to bein g visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible
to determine the visibility of the button.

callback function is called when the application needs

The poss ible values for this attribute are defined by the
specified in section 2.3.2 .

ST_Delegate simple type, as

id (control
identifier)

Specifies the identifier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id and idQ attributes are mutually exclusive. At least one of these attributes is to b e
specified.
For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the
specified in section 2.3.13 .

ST_UniquelD simple type, as

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or
Ul documents.

containers created by other Custom

The id and idQ attributes are mutually exclusive. At least one of these attributes is to be
specified.
For example, consider the following XML fragment:

<customuUl
xmIns="http://schemas.microsoft.com/office/2006/01/c ustomui*
xmins:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:OtherTab" label="Shared Tab">
<group id="MyGroup" label="My Group">
é
</group>
</tab>
</tabs>
</ribbon>

12 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

</customUI>

In this case, ex isan XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If that
tab cannot be found, it is cre ated. A new group belonging to this file is added to the tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9 .

insertAfterMso
(identifi er of built -
in control to insert
after)

Specifies the identifier of a built -in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.
The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ attributes are

mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the

built -in tab with an id of "TabHome".

The possible values for this attribute are defined by t he ST_ID simple type, as specified in
section 2.3.5 .

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inse rted after. If the
value of this attribute is not understood, it SHOULD be ignored.
The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ attributes are

mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">

é
</tab>
In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".
The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9.
insertBeforeMso Specifies the identifier of a built -in control that this control is to be inserted before. If the
(identifier of built - value of this attribute is not understood, it SHOULD be ignored.
in control to insert The insertAfterMso |, insertAfterQ , insertBeforeMso , and insertBeforeQ attribut es are

before)

mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeM so="TabHome" label="Custom Tab">
é
</tab>
In this example, a new custom tab with an id of "MyTab" is to be inserted before the built -in
tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple, as specif ied in
section 2.3.5.

13 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

insertBeforeQ Specifies the qualified identifier of a control that this control is to be inserted before. If the
(qualified identifier value of this attribute is not understood, it SHOULD be ignored.
of control to insert The insertAfterMso |, insertAfterQ , insertBeforeMso , and insertBeforeQ

before) mutually exclusive. If none of these attributes are specified, the controls SHOULD be

For example, consider the following XML fragment:

appended to the existing set of controls, in the order they are defined in the XML.

<tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">

attributes are

é
</tab>
In this example, a new custom tab with an id of "MyTab" is to be inserted before the custom
tab with a qualified identifier of "x:OtherTab".
The possible values for this attribute are defined by the ST_QID simple type, as specified in
section 2.3.9.
visible (control Specifies the visibi lity state of the control.
visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are

omitted, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

The possible values for this attribute are defined by the XML schema

In this example, the built -in tab with an identifier of "TabHome" is to be hidden.

boolean

datatype.

The following XML sche ma fragment defines the contents of this element:

<xsd:complexType name="CT_Box">
<xsd:group ref="EG_Controls" minOccurs="0" maxOccurs="1000"/>
<xsd:attributeGroup ref="AG_IDCustom"/>
<xsd:attributeGroup ref="AG_Visible"/>
<xsd:attributeGroup r ef="AG_PositionAttributes"/>
<xsd:attribute name="boxStyle" type="ST_BoxStyle" use="optional"/>
</xsd:complexType>

2.2.2 button (Button)
This element specifies a standard push -button control that performs an action when

For example, consider a button control, as follows:

) Button

Custom Group
Figure 2: A button control

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace" />

clicked.

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

14 | 522

The following table summarizes

the elements that are parents of this element.

Parent Elements Section
box 221
group 2.2.23

The following table summarizes the

attributes of this element.

Attributes Description
description Specifies a detailed description of the control, which is displayed in detailed views.
(description) The description and getDescription attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:
» o Button
) | o s -
M:f This is a verbase description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<buttoni d="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the simple type, as

specified in se ction 2.3.8 .

ST_LongString

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOUL D default to being enabled.

This attribute cannot be used to enable a built -in control that would otherwise be disabled

by the application.
For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thusthe enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function that is called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

<button id="button" getDescription="GetButtonDescription" />

In this example, the Get ButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the
specified in section 2.3.2 .

ST _Delegate simple type, as

getEnabled
(getEnabled

Specifies the name of a callback function that is called to determine the enabled state of
this control.

15 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

callback)

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is to be called when the
appli cation needs to determine the enabled state of the button.

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST _Delegate simple type, as

getimage
(getimage
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getlmage , image ,and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getimage="GetButtonimage" />

In this example, the GetButtonimage callback function is to be called when the
application needs to determine the icon of the button.

The possible values for this attribute are defined by the
specif ied in section 2.3.2.

ST _Delegate simple type, as

getKeytip

(getKeytip
callback)

Specifies the name of a callback function that is called to determine the suggested
of this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the following XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this exam ple, the GetButtonKeytip callback function is to be called when the
application needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST _Delegate simple type, as

getLabel
callback)

(getLab el

Specifies the name of a callback function to be called to determine the label of this control.

The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel
needs to determine the label of the button.

callback function is to be called when the application

The possible values for this attribute are defi
specified in section 2.3.2.

ned by the ST_Delegate simple type, as

getScreentip
(getScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of this
control.

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

16 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

KeyTip

Attributes Description

<button id="button" getScreent ip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is to be called when the
application needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getShowlmage Specifies the name of a callback function to be called to determine whether the application
(getShowlmage is to display the icon of this control.
callback) This attribute SHOULD have no effect if the size or getSiz e attributes specify that the

control is "large".

The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id="button " getShowlmage="IsButtonlmageVisible" />

In this example, the IsButtonlmageVisible callback function is to be called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by th e ST _Delegate simple type, as
specified in section 2.3.2.

getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel is to display the label of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the

control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is to be called when the
application needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getSize (getSize Specifies the name of a callback function to be called to determine the size of this control.

callb ack) The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize callback function is to be called when the application
needs to determine the size of the button.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getSupertip Specifies the name of a callback function to be called to determine the supertip of this
(getSupertip control.
callback) The getSupertip and supertip attributes are mu tually exclusive. If neither attribute is

specified, no supertip for this control SHOULD be shown.

17 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback func tion is to be called when the
application needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being visible.
For example, consider the f ollowing XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is to be called when the application
needs to determine the visibility of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as

specified in section 2.3.2.

id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control is passed to callback functions to identify which control
corresponds to the function call.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragme nt:

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST _UniquelD simple type, as
specified in section 2.3.13 .

idMso (built -in Specifies the identifier of a built -in control.
control identifier) The contents of this attribute are application -defined.
The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attribu tes

MUST be specified.
For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified Specifies a qualified identifier for a control.

control identifier) The idQ attribute can be used to reference controls or containers ¢ reated by other Custom
Ul documents.

The id, idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

18 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

<customUl
xmlns="http://schemas.microsoft.com/office/200 6/01/customui"”
xmlins:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:OtherTab" label="Shared Tab">
<group id="MyGroup" label="My Group">
é

</group>
</tab>
</tabs>
</ribbon>
</customUlI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If

that tab cannot be found, it is created. A new group belonging to this file is ad ded to the
tab.
The possible values for this attribute are defined by the ST_QID simple type, as specified

in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image that is to be used as the icon for this
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getimage , image ,and imageMso attributes are mutually exclusive. If none of these

attri butes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is to be the embedded image file referenced by
the relationship identifie r of "ForestPic".

The possible values for this attribute are defined by the ST _Uri simple type, as specified in

section 2.3.14 .

image identifier)

imageMso (built -in

Specifies the identifier of a built -in image that is to be used as the icon of this control.

The contents of this attribute are application -defined and SHOULD be ignored if not
understood.

The getlimage , image ,and imageMso attributes are mutually exclusive. If none of these

attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

(identifier of built
control to insert
after)

-in

value of this attri bute is not understood, it SHOULD be ignored.

This specifies a custom button that uses the built -in image with an identifier of "Bold".
The possible values for this attr ibute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso Specifies the identifier of a built -in control that this control is to be inserted after. If the

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are

mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
é

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

19 / 522

Attributes

Description

</tab>

In this example, a new custom tab with an
tab with an identifier of "TabHome".

id of "MyTab" is to be inserted after the built -in

The possible values for this attribute are defined by the
section 2.3.5.

ST_ID simple type, as specified in

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in th

attributes are

e XML.
For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the
in section 2.3.9.

ST_QID simple type, as specified

insertBeforeMso
(identifier of built
control to insert
before)

-in

Specifies the identifier of a built -in control that this control i s to be inserted before. If the

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso
mutually exclusive. If none of these attributes are specified, the controls
appended to the existing set of controls, in the order they are defined in the XML.

,and insertBeforeQ attributes are
SHOULD be

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an
in tab with an identifier of "TabHome".

id of "MyTab" is to be inserted before the built -

The possible values for this attribute are defined by the
section 2.3.5.

ST_ID simple type, as specified in

insertBeforeQ

(g ualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBef oreMso , and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

attributes are

For example, consider the following XML fragm ent:

<tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the
in section 2.3.9.

ST_QID simple type, as specified

keytip (keytip)

Specifiesa string to be used as the suggested KeyTip for this control.

20 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

The keytip and getKeytip attributes are mutually exclusive . If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

aar
This is specified using the following XML fragment:

<button id="button" imageMso="Hap pyFace" keytip="K" />

The possible values for this attribute are defined by the ST _Keytip simple type, as
specified in section 2.3.7 .

label (label) Specifiesa string that is to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custo m Button" />
This specifies a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as

specified in section 2.3.11 .

onAct ion Specifies the name of a callback function to be called when this control is invoked by the
(onAction callback) user.

For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

This specifies a butto n that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

screentip Specifiesa string to be shown as the screentip for this control.

(screentip) The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
A
=y
Buttan

Custo dl_ll_il_m____‘_hh

This i5s the screentip

IZEI Bool3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"

21 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showlmage (show Specifies whether this control displays an icon.

image) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showlmage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.
showLabel (show Specifies whether this co ntrol displays its label.
label) This attribute SHOULD have no effect if the size or getSize attributes specify that the

control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD d efault to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifiesa button that has a label , but does not show it. Even though the label is

hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.
size (control size) Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

B

Boaldl

Custom Group
This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified

22 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

in section 2.3.10 .

supertip (supertip) Specifies a string that is to be shown as the su pertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

[wn)
=7

Button

Custom Group

§ 5 [

i Book3 xlsx
2 Press F1 for mare help,
2

This is specified usingt he following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specifie d in section 2.3.11.

tag (tag) Specifies an arbitrary ~ string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifies a button with a tag value of "123456", which is passed to the ButtonClicked
callback function.
The possible values for this attribute are defined by the ST_String simple type, as

specified in section 2.3.11.

visible (control Specifies the visibility state of the con trol.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built -intabwithan id of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

23 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

<xsd:complexType name="CT_B utton">
<xsd:complexContent>

<xsd:extension base="CT_ButtonRegular">
<xsd:attributeGroup ref="AG_SizeAttributes"/>
</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

2.2.3 button (Unsized Button)

This element specifies a push
size attribute is not present. This element otherwise behaves like the regular
specified in section 2.2.2 .

The following table summarizes the elements that are parents of this element.

button

-button that, because of its location, cannot have its size changed. The

element, as

Parent Elements Section
buttonGroup 225
dialogBoxLauncher 2.2.15
documentControls 2.2.16
dropDown 2.2.17
gallery 2.2.21
gallery 2.2.22
menu 2.2.28
menu 2.2.26
menu 2.2.29
menu 2.2.27
officeMenu 2.2.31
sharedControls 2.2.35

The following table summarizes the attributes of this element.

Attributes Description

description Specifies a detailed description of the

The description and getDescription
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed descri

e Button

; | - v .
\:f This is a verbase description that describes
the function of this control in detail.

This is specified using the following XML fragment:

description="This is a verbose description that describes

<button id="button" label="Button" imageMso="HappyFace"

ption, as follows:

control, which is displayed in detailed views.
attributes are mutually exclusive. If neither attribute

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

24 | 522

Attributes Description

the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8 .

enabled (enabled Specifies the enabled state of the control.

state) The getEnab led and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
This attribute cannot be used to enable a built -in control that would otherwise be disabled

by the application.
For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getDescription Specifies the name of a callback function to be called to determine the detailed description
(getDescription of this control.
callback) The getDescription and description attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:

<button id="button" getDescription="GetButtonDescription" />

In this exa mple, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2 .

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is to be called when the
application needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getimage Specifies the name of a callback function to be called to determine the icon of this control.
(getimage The getimage , image ,and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getimage="GetButtonimage" />

In this example, the GetButtonlmage callback function is to be called when the
application needs to determine the icon of the button.
The possible values for this attribute are defin ed by the ST _Delegate simple type, as

25 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

specified in section 2.3.2.

getKeytip Specifies the name of a callback function that is called to determine the suggested KeyTip
(getKeytip of th is control.
callback) The getkeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:
<button id="button" getKeyt ip="GetButtonKeytip" />
In this example, the GetButtonKeytip callback function is to be called when the
application needs to determine the KeyTip of the button
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getLabel (getLabel Specifies the name of a callback function to be called to determine the label of this control.
callback) The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getLabel="GetButtonLabel" />
In this example, the GetButtonLabel callback function is to be called when the application
needs to determine the label of the button
The possible values for this attribute are defined by the ST Delegate simple type, as
specified in section 2.3.2.
getScreentip Specifies the name of ac allback function to be called to determine the screentip of this
(getScreentip control.
callback)

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or displ ay
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is to be called when the
application needs to determine the screentip of the button.

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST _Delegate simple type, as

getShowlmage
(getShowlmage
callback)

Specifies the name of a callback function to be called to determine whether the application
is to display the icon of this control.

The showlmage and getShowlmage
attribute is specified, the control SHOULD dis

For example, consider the following XML fragment:

attributes are mutually exclusive. If neither
play its icon.

<button id="button" getShowlmage="IsButtonimageVisible" />

callback function is to be called when the
ay the icon of the button

ST_Delegate

In this example, the IsButtonlmageVisible
application needs to determine whether to displ

The possible values for this attribute are defined by the
specified in section 2.3.2.

simple type, as

26 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel is to display the label of this control.
callback)
The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment
<button id="button" getShowLabel="IsButtonLabelVisible" />
In this example, the IsButtonLabelVisible callback function is to be called when the
application needs to determine whether to display the label of the button.
The possible values for this attrib ute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getSupertip Specifies the name of a callback function to be called to determine the supertip of this
(getSupertip control.
callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback f unction is to be called when the
application needs to determine the supertip of the button
The possible values for this attribute are defined by the ST Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the na me of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is to be called when the application
needs to determine the visibility of the button
The possible values for this attrib ute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callbac k functions to identify

which control corresponds to the function call.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" la bel="Button" />
This specifies a custom button control with an id of "MyButton".
The possible values for this attribute are defined by the ST_UniquelD simple type, as

specified in section 2.3.13 .

idMso (built -in

Specifies the identifier of a built -in control.

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

27 | 522

Attributes

Description

control identifier)

-defined.

The id, idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

The contents of this attribute are application

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the
section 2.3.5 .

ST_ID simple type, as specified in

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
Ul documents.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customuUl
xmins="http://schemas.microsoft.com/office/2006/01/customui"
xmins:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:OtherTab" label="Shared Tab">
<group id="MyGroup" label="My Group">
é
</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, "ex" is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If

that tab cannot be found, it is created. A new group belonging to this file is added to the

tab .

The possible values for this attribute are def
in section 2.3.9 .

ined by the ST_QID simple type, as specified

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getlimage , image ,and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, cons ider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is to be the embedded image file referenced by
the relationship identifier of "ForestPic".

The possible values for this attribute are define
section 2.3.14 .

dbythe ST_Uri simple type, as specified in

imageMso (built -in
image identifier)

Specifies the identifier of a built -in image to be used as the icon of this control.

The contents of this attribute are application -defined and SHOULD be ignored if not

understood.

The getlmage , image ,and imageMso attributes are mutually exclusive. If none of these

28 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

attributes are specified, no icon SHOULD be displayed.

For example, consider the follo wing XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built -in image with an identifier of "Bold".

The possible values for this attribute are defined by the
section 2.3.5.

ST_ID simple type, as specified in

insertAfterMso
(identifier of built -in
control to insert

Specifies the identifier of a built -in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAft erQ , insertBeforeMso , and insertBeforeQ attributes are

after) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the follo wing XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
é
</tab>
In this example, a new custom tab with an id of "MyTab" is to be inserted after the built -in
tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertAfterQ Specifies the qualified identifier of a control that this control is to be inserted after. If the

(qualified identifier
of control to insert
after)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appende d to the existing set of controls, in the order they are defined in the XML.

attributes are

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an is inserted after the custom tab

with a qualified identifier of "x:OtherTab".

id of "MyTab"

The possible values for this attribute are defined by the
in section 2.3.9.

ST_QID simple type, as specified

insertBeforeMso
(identifier of built ~ -in
control to insert
before)

Specifies the identifier of a built -in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ

mutually ex clusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

attributes are

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label ="Custom Tab">
é
</tab>

In this example, a new custom tab with an -in tab

with an identifier of "TabHome".

id of "MyTab" is inserted before the built

The possible values for this attribute are defined by the ST _ID simple type, as specified in

29 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, conside r the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an
with a qualified identifier of "x:OtherTab".

The possible valu es for this attribute are defined by the
in section 2.3.9.

attributes are

id of "MyTab" is inserted before the custom tab

ST_QID simple type, as specified

keytip (Keytip) Specifies a string to be used as the suggested KeyTip for this control.
The keytip and getKeytip attributes are mutually exclusive. If neither attr ibute is
specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider a button with KeyTip 'K', as follows:
This is specified using the following XML fragment:
<button id="button" imageMso="HappyFace" keytip="K ">
The possible values for this attribute are defined by the ST _Keytip simple type, as
specified in section 2.3.7 .
label (Label) Specifiesa string to be used as the label for this control.
The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" label="Custom Button" />
This specifies a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .
onAction Specifies the name of a callback function to be called when this control is invoked by the
(onAction callback) user.
For example, consider the following XML fragment:
<button id="button" label="Button" onAction="ButtonClicked" />
This specifiesa button that calls the ButtonClicked callback function when it is invoked.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
screentip Specifies a string to be shown as the screentip for this control.

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

30 / 522

Attributes Description

(screentip) The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or
display no screentip at all.

For example, consider a button with a screentip, as follows:

LA
.__:{-/.

Button

Custam Group

This is the screentip

GEI Book3.xlsx
Press F1 far more help.

This is specified u sing the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showlmage (show Specifies whether this control displays an icon.

image)
The showlmage and getShowlmage attributes are mutually exclusive. If neither

attribute is specified, the control SHOULD display its icon.
For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showlmage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showlLabel (Show Specifies whether this control displays its label.
Label)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fr agment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifiesa button that has a label, but does not show it. Even though the label is

hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.
31/ 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

supertip (Supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

LA
.__:{-/.

Button

Custam Group

J_ -

ii# Book3 xlsx
2 Press F1 far mare help,
2

This is specified using the following XML fragment:

<button id="b utton" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (Tag)

Specifie s an arbitrary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD defaultto anemp ty string
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifiesa button witha tag value of "123456", which is passed to the
ButtonClicked callback function.

The po ssible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built -in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_ButtonRegular">
<xsd:complexContent>

32 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

<xsd:extension base="CT_Control">
<xsd:attributeGroup ref="AG_Action"/>
<xsd:attributeGroup ref="AG_Enabled"/>
<xsd:attributeGroup ref="AG_Description"/>
<xsd:attributeGroup ref="AG_Image"/>
</xsd:extension>
</xsd:complexContent>

</xsd:com plexType>

2.2.4 button (Button Inside of a Split Button)

This element specifies a push -button that is a child of a split button control. The visible and
getVisible attributes are not present because the v isibility is controlled by the split button. This
element otherwise behaves in the same way as the unsized button element, as specified in section
2.2.3.
The following table summarizes the element s that are parents of this element.

Parent Elements Section

splitButton 2.2.38

splitButton 2.2.36

splitButton 2.2.37

The following table summarizes the attributes of this element.

Attributes Description
description Specifies a detailed description of the control, which is displayed in detailed views.
(description) The description and getDescription attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description , as follows:
» o Button
M:fl This is a verbose description that describes
the function of this cantral in detail,

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8 .

enabled (enabled Specifies the enabled state of the control.

state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built -in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="b utton" label="Disabled Button" enabled="false" />

This specifies anew button that is always disabled. A permanently disabled button is not

33/ 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getDescription Specifies the name of a callback function to be called to determi ne the detailed description
(getDescription of this control.
callback) The getDescription and description attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

<butto n id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the

application needs to determine the detailed description of the button

The possible values for this attribute are defined by the ST Delegate simple type, as

specified in section 2.3.2 .
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button

The possible values for this attribute are defined by the ST _Delegate simple type, as

specified in section 2.3.2.
getima ge Specifies the name of a callback function to be called to determine the icon of this control.
(getimage The getimage , image ,and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed

For example, consider the following XML fragment:

<button id="button" getimage="GetButtonimage" />

In this example, the GetButtonlmage callback function is called when the application

needs to determine the icon of the button

The possible values for this attribute are defined by the ST _Delegate simple type, as

specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the follo wing XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button
The possible values for this attribute are defined by t he ST Delegate simple type, as

specified in section 2.3.2.

34 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

getLabel (getLabel Specifies the name of a callback function to be called to determine the label of this control.
callback) The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getLabel="GetButtonLabel" />
In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getScreentip Specifies the name of a callback function that is called to determine the screentip of this
(getScreentip control.
callback)

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or di
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the
needs to determine the screentip

GetButtonScreentip
of the button.

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST_Delegate

splay

callback function is called when the application

simple type, as

getShowlmage
(getShowlmage
callback)

Specifies the name of a callback function that is called to determine whether the applica
SHOULD display the icon of this control.

The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id="button" g etShowlmage="IsButtonimageVisible" />

In this example, the IsButtonlmageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the
specified in section 2.3.2.

tion

ST_Dele gate simple type, as

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function that is called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST_Delegate

attributes are mutually exclusive. If neither attribute

callback function is called when the application

simple type, as

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

35 / 522

Attributes Description

getSupertip Specifies the name of a callback function that is called to determine the supertip of this
(getSupertip control.
callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is

specified, no supertip for this ¢ ontrol SHOULD be shown.
For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST Delegate simple type, as

specified in section 2.3.2.

getVisible Specifies the name of a callback function that is called to determine the visibility state of
(getVisible this ¢ ontrol. This attribute is prohibited.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<button id="button" getVis ible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST Delegate simple type, as

specified in section 2.3.2.

id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the fun ction call.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13 .

idMso (built -in Specifies the identifier of a built -in control.
control identifier) The contents of this attribute are application -defined.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, conside r the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified Specifies a qualified identifier for a control.

control identifier) The idQ attribute can be used to reference controls or containers created by other Custom

Ul documents.

36 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

The id, idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUl
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmins:ex="http://www.ex ample.com">
<ribbon>
<tabs>

<tab idQ="ex:OtherTab" label="Shared Tab">
<group id="MyGroup" label="My Group">
é

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the

tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image tha tis used as the icon for this control.
This attribute is used to specify an embedded picture that resides locally within the
containing file.

The getlmage , image ,and imageMso attributes are mutually exclusive. If none of these
attributes are specified, n o icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14 .

image identifier)

imageMso (built -in

Specifies the identifier of a built -inimage that is used as the icon of this control.

The contents of this attribute are application -defined and SHOULD be ignored if not
understood.

The getlmage , image ,and imageMso attributes are mutually exclusive. If none of these

attributes are specified, no icon SHO ULD be displayed.
For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built -inimage with an id of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertAfterMso Specifies the identifier of a built -in control that this control is to be inserted after. If the
(identifier of built ~ -in value of this attribute is not understood, it SHOULD be ignored.
control to insert The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
after) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

37 /| 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">

é
</tab>
In this example, a new custom tab with an id of "MyTab" is to be inserted after the built -in
tab with an identifier of "TabH ome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertAfterQ Specifies the qualified identifier of a control that this control is to be ins erted after. If the

(qualified identifier
of control to insert
after)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">

é
</tab>
In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".
The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.
insertBeforeMso Specifies the identifier of a built -in control that this control is to be inserted before. If the
(identifier of built ~ -in value of this attribute is not understood, it SHOULD be ignored.
control to insert The insertAfterMso , insertAfterQ , insertBe foreMso ,and insertBeforeQ attributes are
before) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML frag ment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
é
</tab>
In this example, a new custom tab with an id of "MyTab" is to be inserted before the built -
in tab with an identifier of "TabHome".
The possible values for this attribute are def ined by the ST_ID simple type, as specified in
section 2.3.5.
insertBeforeQ Specifies the qualified identifier of a control that this control is to be inserted before. If the

(qualified identifier
of control to insert
before)

value of this attribute is no t understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the o rder they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">

é
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of x:OtherTab.

38 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

The possible values for this attribute are defined by the
in section 2.3.9.

ST_QID simple type, as specified

keytip (keytip) Specifiesa string to be used as th e suggested KeyTip for this control.
The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider a button with KeyTip 'K', as f ollows:
This is specified using the following XML fragment:
<button id="button" imageMso="HappyFace" keytip="K" />
The possible values for this attribute are defined by the ST _Keytip simple type, as
specified in section 2.3.7 .
label (label) Specifies a string to be used as the label for this control.
The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" label="Custom Button" />
This specifies a custom button with a label of "Custom Button".
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .
onAction Specifies the name of a callback function to be called when this control is invoked by the
(onAction callback) user.
For example, consider the following XML fragment:
<button id="button" label="Button" onAction="ButtonClicked" />
This specifiesa button that calls the ButtonClicked callback function when it is invoked.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
screent ip Specifiesa string to be shown as the screentip for this control.
(screentip) attributes are mutually exclusive. If neither attribute is

The screentip and getScreentip

specified, the application SHOULD display the label of the control as the screentip o r display
no screentip at all.
For example, consider a button with a screentip, as follows:

39 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

| _i - L] 'I
"\-:.-_“:;'
Button

Custam Group

This is the screentip

li;_:':rl Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the
specified in section 2.3.11.

ST_String

simple type, as

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

showlmage (show Specifies whether this control displays an icon.
image)
The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider a button that does not display an icon, as follows:
Button with no ican
Custam Group
This is specified using the following XML fragment:
<button id="button" showlmage="false"
label="Button with no icon" />
The possible values for this attribute are defined by the XML schema boolean datatype.
showlLabel (show Specifies whether this control displays its label.
label)
The showLabel and getShowLabel attributes are mutually exc lusive. If neither attribute
is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:
<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />
This specifiesa button that has a label , but does not show it. Even though the label is
hidden, it is provided to accessibility tools.
The possible values for this attribute are defined by the XML schema boolean datatype.
supertip (supertip) Specifiesa string to be shown as the supertip of the control.
40 / 522

Attributes

Description

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

| _--- |
.__::,-/.
Button

Custam Group

§ g [

i Book3.xlsx
2 Press F1 for mare help,
2

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary ~ string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the contro I's tag value SHOULD default to an empty string
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifiesa button witha tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control. This attribute is prohibited.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built -in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType nhame="CT_VisibleButton">
<xsd:complexContent>

41 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

<xsd:restriction base="CT_ButtonRegular">
<xsd:attribute name="visible" use="prohibited"/>
<xsd:attribute name="getVisible" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

2.2.5 buttonGroup (Butto n Grouping Container)

This element specifies a grouping container that groups controls together visually. The child controls

are laid out horizontally.

For example, consider a group of buttons, as f ollows:

B I O

Custom Group
Figure 3: A group of buttons

This is specified using the following XML fragment:

<buttonGroup id="buttonGroup">

<button id="button1" imageMso="Bold" />

<button id="button2" imageMso="Italic" />

<button id="button3" imageMso="Underline" />
</buttonGroup>

The following table summarizes the elements that are parents of this element.

Parent Elements Section
box 22.1
group 2.2.23

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
control (Unsized Control Clone) 2.2.11
dynamicMenu (Unsized Dynamic Menu) 2.2.18
gallery (Unsized Gallery) 2.2.22
menu (Unsized Menu) 2.2.26
splitButton (Unsized Split Button) 2.2.36
toggleButton (Unsized Toggle Bu tton) 2.2.42

The following table summarizes the attributes of this element.

[MS-CUSTOMUI] - v20170919

Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation

Release: September 19, 2017

42 | 522

Attributes Description

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<button id="button" getVisible="|sButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2 .

id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.

For example, consider the following XML fragment:

<button id="My Button" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST _UniquelD simple type, as
specified in section 2.3.13 .

idQ (qualified Specifies a qualified identifier for a control.

control identifier) The idQ attribute can be used to reference controls or containers created by other Custom

Ul documents.

The id and idQ attributes are mutually exclusive. At least one of these attributes MUST be
specified.

For example, consider the following XML fragment:

<customUl
xmins="http://schemas.microsoft.com/office/2006/01/customui"
xmins:ex="http://www.example.com">
<ribb on>
<tabs>
<tab idQ="ex:OtherTab" label="Shared Tab">
<group id="MyGroup" label="My Group">
é

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http:// www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the
tab .
The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .
insertAfterMso Specifies the identifier of a built -in control that this control is to be inserted after. If the
(identifier of built ~ -in value of this attribute is not understood, it SHOULD be ignored.
control to insert The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are

43 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description
after) mutually exclusive. If n one of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
é
</tab>
In this example, a new custom tab with an id of "MyTab" is to be inserted after the built -in
tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .
insertAfterQ Specifies the qualified identifier of a control that this control is to be inserted after. If the

(qualified identifier
of control to insert
after)

value of this attribute is not understoo d, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be

appended to the existing set of controls, in the order they a re defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">

é
</tab>
In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualifie d identifier of "x:OtherTab".
The possible values for this attribute are defined by the ST_QID simple type, as specified

in section 2.3.9.

insertBeforeMso Specifies the identifier of a built -in control tha t this control is to be inserted before. If the
(identifier of built ~ -in value of this attribute is not understood, it SHOULD be ignored.
control to insert The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
before) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" inse rtBeforeMso="TabHome" label="Custom Tab">
é
</tab>
In this example, a new custom tab with an id of "MyTab" is to be inserted before the built -
in tab with an id of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertBeforeQ Specifies the qualified identifier of a control that this control is to be inserted before. If the

(qualified identifier
of control to insert
before)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be

appended to the existing set of controls, in the order they are def ined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
é
</tab>

44 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified id entifier of "x:OtherTab".
The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.
visible (control Specifies the visibility state of the control.
visibility) The getVisible and visible attributes are mu tually exclusive. If these attributes are

omitted, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built -in tab with an identifier of "TabHome" is
The possible values for this attribute are defined by the XML schema

hidden.
boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_ButtonGroup">
<xsd:sequence>
<xsd:choice minOccurs="0" m axOccurs="1000">
<xsd:element name="control" type="CT_ControlCloneRegular"/>
<xsd:element name="button" type="CT_ButtonRegular"/>
<xsd:element name="toggleButton" type="CT_ToggleButtonRegular"/>
<xsd:element name="gallery" type="CT_GalleryRegul ar'/>
<xsd:element name="menu" type="CT_MenuRegular"/>
<xsd:element name="dynamicMenu" type="CT_DynamicMenuRegular"/>
<xsd:element name="splitButton" type="CT_SplitButtonRegular"/>
</xsd:choice>
</xsd:sequence>
<xsd:attributeGroup ref="AG _IDCustom"/>
<xsd:attributeGroup ref="AG_Visible"/>
<xsd:attributeGroup ref="AG_PositionAttributes"/>
</xsd:complexType>

2.2.6 checkBox (Check Box)
This element specifies a standard checkbox control.

For example, consider a checkbox control, as follows:

CheckBox

Custom Group
Figure 4: A checkbox control

This is specified using the following XML fragment:

<checkBox id="checkBox" label="CheckBox" />

The following table summarizes the elements that are parents of this element.

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

45 | 522

Parent Elements Section
box 2.2.1
group 2.2.23
menu 2.2.28
menu 2.2.26
menu 2.2.29
menu 2.2.27
officeMenu 2.2.31

The following table summarizes the attributes of this element.

Attributes Description
description Specifies a detailed description of the control, which is displayed in detailed views.
(description) The description and getDescription attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:
» o Button
\:/I This is a verbase description that describes
the function of this control in detail.

This is spe cified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined b y the ST_LongString simple type, as
specified in section 2.3.8 .

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. | f neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built -in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="but ton" label="Disabled Button" enabled="false" />

This specifies a new button that is always disabled. A permanently disabled button is not
very useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by th e XML schema boolean datatype.

getDescription
(getDescription
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

46 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

<button id="button" getDescription="GetButtonDescription" />

In this example, the Get ButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the ST_Delegate

specified in section 2.3.2 .

simple type, as

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getimage Specifies th e name of a callback function to be called to determine the icon of this control.
(getimage The getimage , image ,and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the followi ng XML fragment:
<button id="button" getimage="GetButtonimage" />
In this example, the GetButtonimage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST_D elegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:
<button id="button" getKeytip="GetButtonKey tip" />
In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
ge tLabel (getLabel Specifies the name of a callback function to be called to determine the label of this control.
callback) The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example , consider the following XML fragment:
<button id="button" getLabel="GetButtonLabel" />
In this example, the GetButtonLabel callback function is called when the application needs
47 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

to determine the label of the button.

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST Delegate simple type, as

getPressed Specifies the name of a callback function to be called to determine the toggled state of this
(getPressed control.
callback) If th is attribute is omitted, the control SHOULD default to the off state.
For example, consider the following XML fragment:
<toggleButton id="toggle" getPressed="IsButtonToggled" />
In this example, the IsButtonToggled callback function is called when the appl ication
needs to determine the toggle state of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getScreentip Specifies the name of a callback function to be called to determine the screentip of this
(getScreentip control.
callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD display the label of the control as the screentip or display
no screentipata Il

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip
needs to determine the screentip of the button.

callback function is called when the application

The poss ible values for this attribute are defined by the
specified in section 2.3.2.

ST Delegate simple type, as

getShowlmage
(getShowlmage

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the i con of this control.

callback)
The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowlmage="IsButtonimag eVisible" />
In this example, the IsButtonlmageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel displays the label of this control.
callback)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButt onLabelVisible callback function is called when the application

48 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST Delegate simple type, as

specified in section 2.3.2.

getSupertip Specifies the name of a callback function to be called to determine the supertip of this
(getSupertip control.
callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD b e shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The pos sible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVi sible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

which control corresponds to the function call.

The id, idQ , and idMso attribute s are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniquelD simple type,
specified in section 2.3.13 .

as

idMso (built -in
control identifier)

Specifies the identifier of a built -in control.
The contents of th is attribute are application -defined.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

section 2.3.5 .

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

49 | 522

Attributes

Description

idQ (qualified
control identifier)

Specifies a qu alified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
Ul documents.

The id, idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For exam ple, consider the following XML fragment:

<customUl
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmins:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:OtherTab" label="Shared Tab">
<group id="MyGroup" label="My Group">
é

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace wit h an identifier of "OtherTab". If

that tab cannot be found, it is created. A new group belonging to this file is added to the
tab .
The possible values for this attribute are defined by the ST_QID simple type, as specified

in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This

attribute is used to specify an embedded picture that resides locally within the ¢ ontaining
file.
The getlmage , image ,and imageMso attributes are mutually exclusive. If none of these

attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is to be the embedded image file referenced by
the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14 .

image identifier)

imageMso (built -in

Specifies the identifier of a built -in image to be used as the icon of this control.

The contents of this attribute are application -defined and SHOULD b e ignored if not
understood.

The getlmage , image ,and imageMso attributes are mutually exclusive. If none of these

attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button to use the built -in image with an id of "Bold".

(identifier of built

-in

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertAfterMso Specifies the identifier of a built -in control that this control is to be inserted after. If the

value of this attribute is not understood, it SHOULD be ignored.

50 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

control to insert

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are

after) mutually ex clusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label= "Custom Tab">
é
</tab>
In this example, a new custom tab with an id of "MyTab" is be inserted after the built -in
tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3 .5.
insertAfterQ Specifies the qualified identifier of a control that this control is to be inserted after. If the

(qualified identifier
of control to insert
after)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

attributes are

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom
tab with a qualified identifier of "x:OtherTab".

The possible va lues for this attribute are defined by the
in section 2.3.9.

ST_QID simple type, as specified

insertBeforeMso
(identifier of built ~ -in
control to insert
before)

Specifies the identifier of a built -in control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the e xisting set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

attributes are

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an nserted before the built -

in tab with an identifier of "TabHome".

id of "MyTab"is to be i

The possible values for this attribute are defined by the
section 2.3.5.

ST_ID simple type, as specified in

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qua lified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ attributes are
mutually exclusive. If no ne of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab" >
é

51 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified

in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.
The keytip and getKeytip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD generate a KeyTip for the control automati cally.

For example, consider a button with KeyTip 'K', as follows:

0

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST _Keytip simple type, as
specified in section 2.3.7 .
label (label) Specifiesa string to be used as the label for this control.
The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" label="Custom Button" />
This specifies a custom button with a label of "Custom Butto n".
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .
onAction Specifies the name of a callback function to be called when this control is invoked by the
(onAction callback) user.
For example, consider the following XML fragment:
<button id="button" label="Button" onAction="ButtonClicked" />
This specifies a button that calls the ButtonClicked callback function when it is invoked.
The possible values for this attribute are defined by the ST _Delegate simple type, as

specified in section 2.3.2.

screentip
(screentip)

Specifiesa string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually e xclusive. If neither attribute is

specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

52 | 522

Attributes

Description

| _i - L] 'I
"\-:.-_“:;'
Button

Custam Group

This is the screentip

li;_:':rl Book3.xlsx
Press F1 far more help.

This is specified using the following XML f ragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showlmage (show

image)

Specifies whether this control displays an icon.

The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group
This is specified using the following XML fragment:

<button id="button" showlmage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel
label)

(show

Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id=" button” label="Label" showLabel="false"
imageMso="HappyFace" />

This specifiesa button that has a label , but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

supertip

(supertip)

Specifies a string to be shown as the supertip of the control.

53 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

specified no supertip for this control SHOULD be shown.
For example, consider a control with a supertip, as follows:

| _--- |
.__::,-/.
Button

Custam Group

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is

For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

ButtonClicked callback function.

_[
1|
i Book3.xlsx
2 Press F1 for mare help,
3
This is specified using the following XML fragment:
<button id="button" image Mso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.
tag (tag) Specifies an arbitr ary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.
If this attribute is omitted, the control's tag value SHOULD default to an empty string

This specifiesa button witha tag value of "123456", which is passed to the

simple type, as

omitted, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

The possible values for this attribute are defined by the XML schema

The possible values for this attribute are defined by the ST_String
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If t

In this example, the built -intab withan id of "TabHome" is hidden.

hese attributes are

boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_CheckBox">
<xsd:complexContent>

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

54 | 522

<xsd:restriction base="CT_Toggle ButtonRegular">
<xsd:attribute name="image" use="prohibited"/>
<xsd:attribute name="imageMso" use="prohibited"/>
<xsd:attribute name="getlmage" use="prohibited"/>
<xsd:attribute name="showlmage" use="prohibited"/>
<xsd:attribute name="getSho wlmage" use="prohibited"/>
<xsd:attribute name="showLabel" use="prohibited"/>
<xsd:attribute name="getShowLabel" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

2.2.7 comboBox (Combo Box)

This element specifies a standard combo box control that allows a user to input a text
one from a list.

For example, consider a combo box control, as follows:

Combo Box t-erd -

| Ttem 1
Item 2
Item 3

LIS

= e
Figure 5: A combo box control

This is specified using the following XML fragment:

<comboBox id="comboBox" label="Combo Box">
<item id="item1" label="Item 1" />
<item id="item2" label="Item 2" />
<item id="item3" label="Item 3" />
</comboBox>

The following table summarizes the elements th at are parents of this element.

string or select

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.
Child Elements Section
item (Selection Item) 2.2.24

The following table summarizes the attributes of this element.

specified, the control SHOULD default to being enabled.

by the application.

This attribute cannot be used to enable a built -in control that would

Attributes Description
enabled (enabled Specifies the enabled state of the control.
state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

otherwise be disabled

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

55 / 522

Attributes

Description

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very

useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determi ne the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEna bled="|sButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST Delegate simple type, as

specif ied in section 2.3.2 .
getimage Specifies the name of a callback function to be called to determine the icon of this control.
(getimage The getimage , image ,and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" getimage="GetButtonimage" />

In this example, the GetButtonimage callback func tion is called when the application
needs to determine the icon of the button.

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST _Delegate simple type, as

getltemCount

Specifies the name of ac allback function to be called to determine the number of selection

(getltemCount items in this control.

callback) If this attribute is omitted, the control SHOULD display any selection items that are
specified as child elements. If no such items are specified, the control SHOULD be empty.
For example, consider the following XML fragment:

<gallery id="gallery" getltemCount="GetGalleryltemCount" />

In this example, the GetGalleryltemCount callback function is called when the application
needs to determine the number of items in the gallery.
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getltemID Specifies the name of a callback function to be called to determine the identifier of a

(getltemID specific dyna mically -created selection item, identified by index.

callback)

If this attribute is omitted, dynamically
identifiers.

-created selection items SHOULD have empty

For example, consider the following XML fragment:

<gallery id="gallery" getltemCount="GetGalleryltemCount"

56 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

getltemID="GetGalleryltemID" />

In this example, the GetGalleryltemID callback function is called when the application
needs to determine the identifier of a selection item.

The possible values for this attribute are defined by the ST _Delegate simplet ype, as
specified in section 2.3.2.

getltemimage
(getltemimage
callback)

Specifies the name of a callback function to be called to determine the icon of a specific
dynamically -created selection item, identified by index.

If this attribute is omitted, dyna mically -created selection items SHOULD NOT display icons.
For example, consider the following XML fragment:

<gallery id="gallery" getltemCount="GetGalleryltemCount"
getltemimage="GetGalleryltemimage" />

In this example, the GetGalleryltemimage callback function is called when the
application needs to determine the icon of a selection item.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getltemLabel
(getltemLabel
callback)

Specifies the name of a callback function to be called to determine the label of a specific
dynamically -created selection item, identified by index.

If this attribute is omitted, dynamically -created selection items SHOULD NOT display labels.
For example, consider the following XML fragment:

<gallery id="gallery" getitemCount="GetGalleryltemCount"
getltemLabel="GetGalleryltemLabel" />

In this example, the GetGalleryltemLabel callback function is called when the application
needs to determine the label of a selection item.
The possible values for this attribute are defined by the ST _Delegate simple type, as

specified in section 2.3.2.

getltemScreentip
(getltemScreentip
callback)

Specifies the name of a callback function to be called to determine the screentip of a
specific dynamically -created selection item, identified by index.

If this attribute is omitted, dynamically -created selection items SHOULD use their labels as
their screentips, or display no screentips at all.

For example, consider the following XML fragment:

<gallery id="gallery" getltemCount="GetGalleryltemCount"
getltemScreentip="GetGalleryltemScreentip" />

In this example, the GetGalleryltemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getltemSupertip
(getltemSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of a specific
dyna mically -created selection item, identified by index.

If this attribute is omitted, dynamically -created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

<gallery id="gallery" getitemCount="GetGalleryltemCount"

57 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

getltemSupertip="GetGalleryltemSupertip" />

In this example, the GetGalleryltemSupertip callback function is called when the
application needs to determine the supertip of a selection item.

The possible values for this attribute are defined by the simple type, as

specified in section 2.3.2.

ST_De legate

getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:
<button id="button" getKeytip="GetButtonKeyt ip" />
In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
get Label (getLabel Specifies the name of a callback function to be called to determine the label of this control.
callback) The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getLabel="GetButtonLabel" />
In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.
The possible values for this attribute a re defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getScreentip Specifies the name of a callback function to be called to determine the screentip of this
(getScreentip control.
callback) attributes are mutually exclusive. If neither attribute is

The getScreentip and screentip
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreent ip="GetButtonScreentip" />

In this example, the GetButtonScreentip
needs to determine the screentip of the button.

callback function is called when the application

The possible values for this attribute are defined by the simple type, as

specif ied in section 2.3.2.

ST_Delegate

getShowlmage
(getShowlmage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showlmage and getShowlmage attributes are mutually exclusi ve. If neither

attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:

58 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

<button id="button" getShowlmage="IsButtonimageVisible" />

In this example, the IsButtonlmageVisible callback function is called w hen the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD display the label of this control.
callback)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getSupertip Specifies the name of a callback function to be called to determine the supertip of this
(getSupertip control.
callback)

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.

The possible value s for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getText (getText Specifies the name of a callback function to be called to determine the text that is displayed
callback) in the control.

For example, consider the following XML fragment:

<editBox id="editBox" getText="GetEditBoxText" />

In this example, the GetEditBoxText callback function is called when the application needs
to determine the text to display in the control.

The possible values for this attribut e are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

59 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as

specified in section 2.3.2.

id (control
identifier)

Specifies the identi fier for a custom control. All custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ , and idMso attributes are mutually exclu sive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

idMso (built -in
control identifier)

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13 .

Specifies the identifier of a built -in control.

The contents of this attribute are application -defined.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identi fier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
Ul documents.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the foll owing XML fragment:

<customUl
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmins:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:OtherTab" label="Shared Tab">
<group id="MyGroup" label="My Group">
é
</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab can not be found, it is created. A new group belonging to this file is added to the
tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

60 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getlmage , image ,and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is the
relationship identifier of "ForestPic".

embedded image file referenced by the

The possible values for this attribute are defined by the
section 2.3.14 .

ST _Uri simple type, as specified in

imageMs o (built -in
image identifier)

Specifies the identifier of a built -in image to be used as the icon of this control.

The contents of this attribute are application -defined and SHOULD be ignored if not

understood.

The getlmage , image ,and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

ntifier of "Bold".
ST_ID simple type, as specified in

This specifies a custom button that uses the built -in image with an ide

The possible values for this attribute are defined by the
section 2.3.5.

insertAfterMso
(identifier of built ~ -in
control to insert

Specifies the identifier of a built -in control that this control is to be inserted after. If the

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ attributes are

after) mutually exclusive. If none of these attributes are specified, the control s SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
é
</tab>
In this example, a new custom tab with an id of "MyTab" is to be inserted after the built -in
tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertAfterQ Specifies the qualified identifier of a control that this control is to be inserted after. If the

(qua lified identifier
of control to insert
after)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeM so, and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

attributes are

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an id of "MyTab" is to be inserted after the custom

61 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.
insertBeforeMso Specifies the identifier of a built -in control that this control is to be inserted before. If the
(identifier of built ~ -in value of this attribute is not understood, it SHOULD be ignored.
control to insert The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
before) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
é
</tab>
In this example, a new custom tab with an id of "MyTab" is to be inserted before the built -
in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertBeforeQ Specifies the qualified identifier of a contr ol that this control is to be inserted before. If the
(qualified identifier value of this attribute is not understood, it SHOULD be ignored.
of control to insert The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
before) mutually exclusive. If none of these attributes are s pecified, the controls SHOULD be

appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
é
</tab>

In this example , a new custom tab with an id of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

invalidateContent
OnD rop (invalidate
content on drop)

Specifies whether this control invalidates its contents and re -queries for them when the
user opens its drop -down menu.

If this attribute is omitted, its value SHOULD default to "false".
For example, consider the following XML fragment:

<comboBox id="comboBox" getltemCount="GetComboBoxItemCount"
getltemLabel="GetComboBoxItemLabel"
invalidateContentOnDrop="true" />

In this example, this combo box clears out its items and re -calls the
GetComboBoxItemCount and GetComboBoxlt emLabel callback functions to populate
its contents each time the user opens it.

The possible values for this attribute are defined by the XML schema boolean datatype.

keytip (keytip)

Specifiesa string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

62 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

0

=

This is specified using th e following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the
specified in section 2.3.7 .

ST _Keytip simple type, as

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<buttonid ="button" label="Custom Button" />

with a label of "Custom Button".
ST_String

This specifies a custom button

The possible values for this attribute are defined by the
specified in section 2.3.11 .

simple type, as

maxLength
(maximum input
string length)

Specifies an integer
into the control.

If the maxLength attribute is omitted, the length of the input
limited, ex cept by application -specific constraints.

For example, consider the following XML fragment:

<editBox id="editBox" maxLength="10" />

This specifies an edit box control that can only accept
length.

strings

The possible values for this attribute are defined by the
specified in section 2.3.12 .

ST_StringLength

up to 10 characters in

to be used as the maximum length of a string that can be entered

string SHOULD NOT be

simple type, as

onChange Specifies the name of a callback function to be called when the text in the control has been
(onChange changed by the user.
callback) For example, consider the following XML fragment:
<editBox id="editBox" onChange="EditBoxTextChanged" />
This specifies an edit box control that calls the EditBoxTextChanged callback functi on
when the user inputs a text string
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
screentip Specifiesa string to be shown as the screentip for this control.
(screentip) The screentip and getScreentip

attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

63 / 522

Attributes Description

LA
.__:{-/.

Button

Custam Group

This is the screentip

GEI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showlmage (show Specifies whether this control displays an icon.

image)
The showlmage and getShowlmage attributes are mutually exclusive. If neither

attribute is specified, the control SHOULD display its icon.
For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showlmage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean dat atype.

showltemlmage Specifies whether this control displays icons on its selection items.
(show item image) If this attribute is omitted, the items' icons SHOULD be shown by default.
For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showltemlmage="false" >
<item id="item1" label="ltem 1" />
<item id="item2" label="ltem 1" />
<item id="item3" label="ltem 2" />
<item id="item4" label="ltem 3" />

</gallery>
This specifies a gallery control that does not show any icons on its selection items.
The possible values for this attribute are defined by the XML schema boolean datatype.
showLabel (show Specifies whether this control displays its label.

label)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

64 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This sp ecifiesa button that hasa label , but does not show it. Even though the label is

hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.
sizeString (size Specifiesa string whose size is used to determine the width of the text input area of this
string) control.

If this attribute is omitted, the application SHOULD determine the width of the text input

area of the control automatically.

For example, consider the following XML fra gment:

<editBox id="editBox" sizeString="WWWWWWWWWWWWW" />

This specifies an edit box control that SHOULD be wide enough to display the string

The possible values for this attribute are defined by the ST_String simple type, as

specified in section 2.3.11.
supertip (supertip) Specifiesa string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is

specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

[mary

.":":l./.

Buttan

Custam Group
L

i 3 e

i Book3.xlsx
2 Press F1 for mare help,
=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The pos sible values for this attribute are defined by the ST_String simple type, as

specified in section 2.3.11.
tag (tag) Specifies an arbitrary ~ string that can be used to hold data or identify the control. The

contents of this attribute SHOULD be passed to any callback functions specified on this

control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string

65 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

For exampl e, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifiesa button witha tag value of "123456", which is passed to the
ButtonClicked callback function.

specified in section 2.3.11.

The possible values for thi s attribute are defined by the ST_String simple type, as

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted , the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built -in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean

datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_ComboBox">
<xsd:complexContent>
<xsd:extension base="CT_EditBox" >
<xsd:sequence>
<xsd:element name="item" type="CT_Item" minOccurs="0" maxOccurs="1000"/>
<Ixsd:sequence>
<xsd:attributeGroup ref="AG_DropDownAttributes"/>
<xsd:attributeGroup ref="AG_DynamicContentAttributes"/>
</xsd:extension>
<Ixsd: complexContent>

</xsd:complexType>

2.2.8 command (Repurposed Command)
This element specifies that a particular built -in command in the application is to be repurposed.
The enabled and getEnabled attributes can be sp ecified to disable a command.

The onAction attribute allows the functionality of a command to be repurposed to run a callback
function. Only commands that execute simple actions (for example, commands represented as button
controls) can be repurposed using onAction

For example, consider the following XML fragment:

<commands>

<command idMso="Bold" enabled="false" />

<command idMso="Paste" onAction="MyPasteFunction" />
</commands>

In this example, the Bold command is permanently disabled and that the callback function
MyPasteFunction is called when the Paste command is invoked.

The following table summarizes the elements that are parents of this element.

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

66 / 522

Parent Elements

commands (section 2.2.9)

The following table summarizes the attributes of this element.

Attributes Description
enabled (enabled Specifies the enabled state of the control.
state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built -in control that would otherwise be disabled
by the application.

For example, consider the fo llowing XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for th is attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusi ~ ve. If neither attribute is

specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2 .

idMso (built -in Specifies the identifier of a built -in control.
control identifier) The contents of this attribute are application -defined.
For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

onAction Specifies the name of a callback fun ction to be called when this control is invoked by the
(onAction callback) user.

For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

67 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_Command" mixed="false">
<xsd:at tributeGroup ref="AG_Action"/>
<xsd:attributeGroup ref="AG_Enabled"/>
<xsd:attributeGroup ref="AG_IDMso"/>
</xsd:complexType>

229 commands (List of Repurposed Commands)

This element specifies a list of repurposed commands. This element SHOULD NOT be specified if the
containing Custom Ul XML document is a Quick Access Toolbar Customizations part.

The following table summarizes the elements that are parents of this element.

Parent Elements

customUl (section 2.2.14)

The following table summarizes the child elements of this element.

Child Elements Subclause

command (Repurposed Command) section 2.2.8

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_Commands">
<xsd:sequence>
<xsd:element name="command" type="CT_Command" minOccurs="1" maxOccurs="5000"/>
</xsd:sequence>

</xsd:complexType>

2.2.10 contextualTabs (List of Contextual Tab Sets)

This element specifies a list of contextual tab sets. This element SHOULD NOT be specified if the
containing Custom Ul XML document is a Quick Access Toolbar Customizations part.

The following table summarizes the elements that are parents of this element.

Parent Elements

ribbon (section 2.2.33)

The following table summarizes the child elements of this element.

Child Elements Subclause

tabSet (Contextual Tab Set) section 2.2.41

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_ContextualTabs">
<xsd:sequence>
<xsd:element name="tabSet" type="CT_TabSet" minOccurs="1" maxOccurs="100"/>
</xsd:sequence>

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

68 / 522

</xsd:complexType>

2.211 control (Unsized Control Clone)

This element specifies a clone of a control that, because of its location, cannot have its size changed.
The size attribute is not present. The element otherwise behaves like the regular control element, as
specified in section 2.2.12 .

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu
(section 2.2.27); officeMenu (section 2.2.31)

The following table summarizes the attributes of this element.

Attributes

Description

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built -in co ntrol that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button.

The possible valu es for this attribute are defined by the ST _Delegate simple type, as

specified in section 2.3.2 .
getimage Specifies the name of a callback function to be called to determine t he icon of this control.
(gﬁgmi?e The getimage , image ,and imageMso attributes are mutually exclusive. If none of these
callbac

attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:

<button id="button" getimage="GetButtonl mage" />
In this example, the GetButtonlmage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as

69 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

specified in section 2.3.2.

getK eytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getkeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:
<button id="button" getKeytip="GetButtonKeytip" />
In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getLabel (getLabel Specifies the name of a callback function to be called to determine the label of this control.
callback) The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consid er the following XML fragment:
<button id="button" getLabel="GetButtonLabel" />
In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.
The possible values for this attribute are defi ned by the ST_Delegate simple type, as
specified in section 2.3.2.
getScreentip Specifies the name of a callback function to be called to determine the screentip of this
(getScreentip control.
callback) attributes are mutual

The getScreentip and screentip ly exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip ">

In this example, the GetButtonScreentip
needs to determine the screentip of the button.

callback function is called when the application

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST _Delegate simple type, as

getShowlmage
(getShowlmage
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id="button" getShowlmage="IsButtonimageVisible" />

In this example, the IsButtonlmageVisib le callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST_Delegate

specified in section 2.3.2.

simple type, as

70 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the label of this control.

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the contr ol SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determi ne whether to display the label of the button.

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST Delegate simple type, as

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to d
control.

etermine the supertip of this

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" ge tSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip
needs to determine the supertip of the button.

The possible values for this attribute are defined by the
specified in section 2.3.2.

callback function is called when the application

ST Delegate simple type, as

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
control.

The getVisible and visible attributes are mutually exclusive. If neithe r attribute is

specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible
to determine the visibility of the button.

The possible values for this attribute are defined by the
specified in section 2.3.2.

callback function is called when the applicati on needs

ST_Delegate simple type, as

id (control
identifier)

Specifies the identifier for a custom control. All custom control s MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST b e specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the
specified in section 2.3.13 .

ST_UniquelD simple type, as

idMso (built -in

Specifies the identifier of a built -in control.

71/ 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

control identifier)

The contents of this attribute are application -defined.

The id, idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
Ul documents.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customuUl
xmins="http://schemas.microsoft.com/office/2006/01/customui"
xmins:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:OtherTab" label="Shared Tab">
<group id="MyGroup" label="My Group">
é
</group>
</t ab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the

tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getlimage , image ,and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" i mage="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14 .

imageMso (built -in
image identifier)

Specifies the identifier of a built -in image to be used as the icon of this control.
The contents of this attribute are application -defined and SHOULD be ign ored if not
understood.

The getlmage , image ,and imageMso attributes are mutually exclusive. If none of these

72 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom button that uses the built -in image with an identifier of "Bold".

The possible values for this attribute are defined by the
section 2.3.5.

ST_ID simple type, as specified in

insertAfterMso
(identifier of built -in
control to insert

Specifies the identifier of a built -in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBefo reMso , and insertBeforeQ attributes are

(qualified identifier
of control to insert
after)

after) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragme nt:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
é
</tab>
In this example, a new custom tab with an id of "MyTab" is to be inserted after the built -in
tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertAfterQ Specifies the qualified identifier of a control that this control is to be inserted after. If the

value of this attribute is not under stood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

attributes are

For example, consider the following XML fragment:

<tab id="MyTab" inse
é
</tab>

rtAfterQ="x:OtherTab" label="Custom Tab">

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by t
in section 2.3.9.

he ST_QID simple type, as specified

insertBeforeMso
(identifier of built ~ -in
control to insert
before)

-in control that this control is to be inserted before. If the
value of this attribute is not unders tood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ

mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

Specifies the identifier of a built

attributes are

For example, consider the following XML fragment:

<tab id="MyTab" inse rtBeforeMso="TabHome" label="Custom Tab">
é

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built -in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST _ID simple type, as specified in

73 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

section 2.3.5.

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it S HOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defi ned in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a quali fied identifier of "x:OtherTab".

The possible values for this attribute are defined by the
in section 2.3.9.

attributes are

ST_QID simple type, as specified

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the
specified in section 2.3.7 .

ST _Keytip simple type, as

label (label)

Specifiesa string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Bu tton" />

of "Custom Button".
ST_String

This specifies a custom button with a label

The possible values for this attribute are defined by the
specified in section 2.3.11 .

simple type, as

screentip
(screentip)

Specifiesa string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.
For example, consider a button with a screentip, as follows:

74 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

| _i - L] 'I
"\-:.-_“:;'
Button

Custam Group

This is the screentip

li;_:':rl Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the
specified in section 2.3.11.

ST_String

simple type, as

showlmage
image)

(show Specifies whether this control displays an icon.

The showlmage and getShowlmage
attribute is specified, the control SHOULD display its icon.

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showlmage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema

attributes are mutually exclusive. If

For example, consider a button that does not display an icon, as follows:

neither

boolean datatype.

showLabel
label)

(show Specifies whether this control displays its label.

The showLabel and getShowLabel attributes are mutually exc
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifiesa button that has a
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema

lusive. If neither attribute

label , but does not show it. Even though the label is

boolean datatype.

supertip (supertip) Specifiesa string to be shown as the supertip of the control.

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

75 | 522

Attributes

Description

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

| _--- |
.__::,-/.
Button

Custam Group

§ g [

i Book3.xlsx
2 Press F1 for mare help,
2

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag)

Specifies an arbitrary ~ string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribut e is omitted, the control's tag value SHOULD default to an empty string
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifiesa button witha tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control
visibility)

Specifies the visibility state of the control.

The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built -in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_ControlCloneRegular">
<xsd:complexContent>

76 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

<xsd:restriction base="CT_Control">

<xsd:attribute name="id" use="prohibited"/>

</xsd:restriction>

</xsd:complexContent>
</xsd:complexType>

2.2.12 control (Control Clone)

This element spe cifies a clone of an existing control. Built -in controls can be cloned using the idMso
attribute. Custom controls cannot be cloned. Custom controls cannot be created using the control
element.

When an existing control is cloned, its non -location -specific p roperties, such as the icon and label, are
copied to the clone. Location -specific properties, such as the size and visibility of the control, are not
copied. These properties can be set by specifying additional attributes on the control element.

For exampl e, consider the following XML fragment:

<control idMso="Paste" size="large" />

This results in a large copy of the Paste control, as follows:

i
[etc]

Paste
Custam Group
Figure 6: A Paste control

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this ele ment.
Attributes Description
description Specifies a detailed description of the control, which is displayed in detailed views.
(description) The description and getDescription attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.
For example, consider a button with a detailed description, as follows:

s o Button

~:/ This is a verbase description that describes
the function of this contral in detail.

This is specified using the following XML fragment:

<buttoni d="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as

77 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

specified in se ction 2.3.8 .

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOUL D default to being enabled.

This attribute cannot be used to enable a built -in control that would otherwise be disabled

by the application.
For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getDescription
(getDescrip tion
callback)

Specifies the name of a callback function to be called to determine the detailed description
of this control.

The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT dis play any detailed text.

For example, consider the following XML fragment:

<button id="button" getDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.

The possible values for this attribute are defined by the
specified in section 2.3.2 .

ST Delegate simple type, as

getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST _Delegate simple type, as

specified in section 2.3.2.
getimage Specifies th e name of a callback function to be called to determine the icon of this control.
(getimage The getimage , image ,and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.

For example, consider the followi ng XML fragment:

<button id="button" getimage="GetButtonimage" />

In this example, the GetButtonlmage callback function is called when the application

needs to determine the icon of the button.

The possible values for this attribute are defined by the ST_D elegate simple type, as

specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip

78 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description
callback) this control.
The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:
<button id="button" getKeytip="GetButtonKey tip" />
In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.
The possible values for this attribute are defined by the ST Delegate simple type, as
specified in section 2.3.2.
getLabel (getLabel Specifies the name of a callback function to be called to determine the label of this control.
callback) The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example , consider the following XML fragment:
<button id="button" getLabel="GetButtonLabel" />
In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getScreentip Specifies the name of a callback function to be called to determine the screentip of this
(getScreentip control.
callback) attributes are mutually exclusive. If neither attribute is

The getScreentip and screentip
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<butt on id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip
needs to determine the screentip of the button.

The possible values for this attribute are defined by the
specified in section 2.3.2.

callback function is called when the application

ST_Delega te simple type, as

getShowlmage
(getShowlmage

Specifies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".
The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For exampl e, consider the following XML fragment:
<button id="button" getShowlmage="IsButtonimageVisible" />
In this example, the IsButtonlmageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

79/ 522

Attributes

Description

callback)

displays the lab el of this control.

This attribute SHOULD have no effect if the
control is "large".

size or getSize attributes specify that the

The showLabel and getShowLabel
is specified, the control SHOULD default

For example, consider the following XML fragment:

attributes are mutually exclusive. If neither attribute
to showing its label.

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible
needs to determine whether to disp

callback function is called when the application
lay the label of the button.

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST _Delegate simple type, as

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the size of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize" />

In this example, the GetButtonSize
to determine the size of the button.

callback function is called when the application needs

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST Delegate simple type, as

getSupertip Specifies the name of a callback function to be called to determine the supertip of this
(g etSupertip control.
callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the button.
The poss ible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVis ible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the | sButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

80 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

which control corresponds to the function call.

The id, idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The p ossible values for this attribute are defined by the ST _UniquelD simple type, as
specified in section 2.3.13 .

idMso (built -in
control identifier)

Specifies the identifier of a built -in control.
The contents of this attribute are application -defined.

The id, idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of “Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
Ul documents.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specif ied.

For example, consider the following XML fragment:

<customuUl
xmins="http://schemas.microsoft.com/office/2006/01/customui"
xmins:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:OtherTab" label="Shared Tab">
<group id="MyGroup" label="My Group">
é
</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace wit h an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the

tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the ¢ ontaining
file.

The getlmage , image ,and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

81 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the
section 2.3.14 .

ST _Uri simple type, as specified in

imageMso (built -in
image identifier)

-in image to be used as the icon of this control.
-defined and SHOULD be ignored if not

Specifies the identifier of a built

The contents of this attribute are application
understood.

The getlmage , image ,and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

This specifies a custom bu tton that uses the built -in image with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

section 2.3.5.

insertAfterMso
(identifier of built ~ -in
control to insert

Specifies the ident ifier of a built -in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ attributes are

after) mutually exclusive. If none o f these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
é
</tab>
In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built -in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
in sertAfterQ Specifies the qualified identifier of a control that this control is to be inserted after. If the

(qualified identifier
of control to insert
after)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

attributes are

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the
in section 2.3.9.

ST_QID simple type, as specified

insertBeforeMso
(identifier of built ~ -in

Specifies the identifier of a built -in control that this control is to be insert ed before. If the

82 /| 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

control to insert
before)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
app ended to the existing set of controls, in the order they are defined in the XML.

attributes are

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an identifier
built -in tab with an identifier of "TabHome".

of "MyTab" is to be inserted before the

The possible values for this attribute are defined by the
section 2.3.5.

ST_ID simple type, as specified in

insertBeforeQ
(qualified identifier
of control to insert
bef ore)

Specifies the qualified identifier of a control that this control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ
mut ually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

attributes are

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeQ="x:OtherT ab" label="Custom Tab">
é

</tab>

In this example, a new custom tab with an identifier of "MyTabh" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the
in section 2.3.9.

ST_QID simple type, as specified

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD gene rate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

1

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are
specified in section 2.3.7 .

defined by the ST_Keytip simple type, as

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Butto n".

The possible values for this attribute are defined by the ST _String simple type, as

83 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

specified in section 2.3.11 .

onAction Specifies the name of a callback function to be called when this control is invoked by the
(onAction callback) user.

For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

screentip Specifies a string to be shown as the screentip for this control.

(screentip) The screentip and getScreentip attributes are mutually e xclusive. If neither attribute is

specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
LA
.":":l./.
Buttan

Custa dl_ulda_l_-m-____ﬂh

This is the screentip

GEI Book3.xlsx .[
1 Press F1 for mare help.
=
This is specified using the following XML f ragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showlmage (show Specifies whether this control displays an icon.

image) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showlmage="false"
label="Button with no icon" />

84 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel
label)

(show

Specifies whether this control displays its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consid er the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifiesa button thathas a label , but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possib le values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD defaul tto the normal size.

For example, consider a large button, as follows:

B

Bl

Custam Group
This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10 .

supertip

(supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.
For example, consider a control with a supertip, as follows:
A
=)

Button

Custam Group

L
1|
i Book3.xlsx
2 Press F1 for mare help,
=
This is specified using the following XML fragment:
<button id="button" image Mso="HappyFace" label="Button"

size="large" screentip="Screentip"

85 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbit rary string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifiesa button witha tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If t hese attributes are

omitted, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built -in tab with an identifier of "TabHome" is hidden.
The possible va lues for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_ControlClone">
<xsd:complexContent>
<xsd:restriction base="CT_Button">
<xsd: attribute name="id" use="prohibited"/>
<xsd:attribute name="onAction" use="prohibited"/>
</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

2.2.13 control (Quick Access Toolbar Control Clone)

This element specifies a clone of an existing control. It is specific to control clones on the quick access

toolbar, but otherwise behaves the same way as the regular control element, as specified in section
2.2.12 .

The following table summarizes the elements that are parents of this element.

Parent Elements

documentControls (section 2.2.16); sharedControls (section 2.2.35)

The following table summarizes the attributes of this element.

86 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

description
(description)

Specifies a de tailed description of the control, which is displayed in detailed views.

The description ~ and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.

For example, consider a butt ~ on with a detailed description, as follows:
» o Button
*:/ This is a verbase description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8 .

enabled (enabled
state)

Specifie s the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built -in control that would otherwis e be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enab led attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getDescription Specifies the name of a callback function to be called to determine the detailed description
(getDescription of this control.
callback) The getDescription and description attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD NOT display any detailed text.

For example, consider the following XML fragment:

<button id="button" ge tDescription="GetButtonDescription" />

In this example, the GetButtonDescription callback function is called when the

application needs to determine the detailed description of the button

The possible values for this attribute are defined by the ST _Delegate simple type, as

specified in section 2.3.2 .
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback)

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example , the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

87 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST_Delegate simple type,

as

getimage Specifies the name of a callback function to be called to determine the icon of this control.
(getimage The getimage , image ,and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For exampl e, consider the following XML fragment:
<button id="button" getimage="GetButtonimage" />
In this example, the GetButtonlmage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ~ ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTi p of
(getKeytip this control.
callback) The getkeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:
<button id="button" getKeytip="GetButtonKeytip" />
In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.
The possible values for this attribute are defined by the ST Delegate simple type, as
specifie d in section 2.3.2.
getLabel (getLabel Specifies the name of a callback function to be called to determine the label of this control.
callback) The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getLabel="GetButtonLabel" />
In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.
The possible val ues for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getScreentip Specifies the name of a callback function to be called to determine the screentip of this
(getScreentip control.
callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" g etScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip
needs to determine the screentip of the button.

callback function is called when the application

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getShowlmage Specifies the name of a callback function to be called to determine whether the application
88 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

(getShowlmage

SHOULD display the icon of this control.

callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".
The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id=" button" getShowlmage="IsButtonimageVisible" />
In this example, the IsButtonlmageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD displ ay the label of this control.
callback) This attribute SHOULD have no effect if the

size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOUL D default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine wheth er to display the label of the button.

The possible values for this attribute are defined by the ST Delegate simple type, as

specified in section 2.3.2.

getSize (getSize
callback)

Specifies the name of a callback function to be called to determine the siz e of this control.

The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize ">

In this example, the GetButtonSize
to determine the size of the button.

callback function is called when the application needs

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST _Delegate simple type, as

getSupertip
(getSupertip
callback)

Specifies the name of a callback function to be called to determine the supertip of this
control.

The getSupertip
specified, no supertip for this con

and supertip attributes are mutually exclusive. If neither attribute is
trol SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the bu tton.

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST_Delegate simple type, as

89 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

getVisible
(getVisible
callback)

Specifies the name of a callback function to be called to determine the visibility state of this
contr ol.

The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs

to determine the visibility of the button.

The possible values for this attribute are defined by the ST _Delegate simple type,
specified in section 2.3.2.

as

id (cu stom control
identifier)

Specifies the identifier for a custom control. All new custom controls MUST have unique
identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ , and idMso attributes are mutually exclusive.
For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

section 2.3.5 .

idMso (built -in
control identifier)

Specifies the identifier of a built -in control.
The contents of this attribute are application -defined.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a cl one of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

section 2.3.5.

idQ (qualified
control identifier)

Specifies a qualified identifier for a control. The identifier is qualified with an XML
namespace prefix that specifies the owner of the control. If the namespace is equal to the

Custom Ul namespace, the idQ attribute behaves in the same manner as the idMso
attribute. If the namespace is equal to the name of the curre nt file, the idQ attribute

behaves like the id attribute. If the namespace is equal to the name of a different file, the
attribute references a control from that file.

The idQ attribute can be used to reference controls or containers created by other Custo m
Ul documents.
The id, idQ ,and idMso attributes are mutually exclusive.
For example, consider the following XML fragment:
<tab idQ="x:OtherTab">
<group id="MyGroup" label="My Group">
é
</group>
</tab>
In this case x is an XML namespace equal to the name of another file that has a Custom Ul
90 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

document witha tab with an identifier of "OtherTab". This example adds a custom group
to that tab .

The possible values for this attribute are defined by the ST _QID simple type, as specified

in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embed ded picture that resides locally within the containing
file.

The getlmage , image ,and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<but ton id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the
section 2.3.14 .

ST _Uri simple type, as specifiedi n

imageMso (built -in
image identifier)

Specifies the identifier of a built -in image to be used as the icon of this control.

The contents of this attribute are application -defined and SHOULD be ignored if not

understood.

The getlmage , image ,and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" imag eMso="Bold" />

This specifies a custom button that uses the built -in image with an identifier of "Bold".

The possible values for this attribute are defined by the
section 2.3.5.

ST_ID simple type, as specified in

insertAfterMso
(identifier of built ~ -in
control to insert

Specifies the identifier of a built -in control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ attributes are

after) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" inse rtAfterMso="TabHome" label="Custom Tab">
é
</tab>
In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built -in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertAfterQ Specifies the qualified identifier of a control that this control is to be inserted after. If the

(qualified identifier
of control to insert
after)

value of this attribute is not understood, it SHO ULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are define d in the XML.

attributes are

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">

91 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

é
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the

custom tab with a qualified identifier of "x:OtherTab".
The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.
insertBeforeMso Specifies the identifier of a built -in control that this control is to be inserted before. If the
(identifier of built -in value of this attribute is not understood, it SHOULD be ignored.
control to insert The insertAfterMso |, insertAfterQ , insertBeforeMso , and insertBeforeQ attributes are
before) mutually exclusive. If none of these attributes are specifie d, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
é
</tab>
In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built -in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertBeforeQ Specifies the qualified identifier of a control that this control is to be inserted before. If the

(qualified identi fier
of control to insert
before)

value of this attribute is not understood. it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and ins ertBeforeQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="M yTab" insertBeforeQ="x:OtherTab" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9.

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the ST_Keytip simple type, as
specified in section 2.3.7 .

label (label)

Specifies a s tring to be used as the label for this control.

92 |/ 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom B utton" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .

screenti p
(screentip)

Specifiesa string to be shown as the screentip for this control.

The screentip and getScreentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or
no screentip at all.

For example, consider a button with a screentip, as follows:

LA
.__:{-/.

Button

Custam Group

This is the screentip

GEI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

display

showlmage
image)

(show

Specifies whether this control displays an icon.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as foll ows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showlmage="false"
label="Button with no icon" />

93 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

The possible values for this attribute are defined by the XML schema boolean datatype.

showLabel
label)

(show

Specifies whe ther this control displays its label.

This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the cont rol SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifiesa button thathas a label , but does not show it. Even though the label is
hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

B

Bl

Custam Group
This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10 .

supertip

(supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider a control with a supertip, as follows:
A
=)

Button

Custam Group

J_ w iy

i Book3.xlsx
2 Press F1 for mare help,
=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"

94 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

supertip="This is the supertip string" />

The possible values for this attribute are defined by the
specified in section 2.3.11.

ST_String

simple type, as

visible
visibility)

(control Specifies the visibility state of the control.

The getVisible and visible
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built -in tab with an identifier

attributes are mutually exclusive. If these attributes are

of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean datatype.
The following XML schema fragment defines the contents of this element:
<xsd:complexType name="CT_ControlCloneQat">
<xsd:complexContent>
<xsd:extension base="CT_ControlBase">
<xsd:attribute name="id" type="ST_ID" use="optional"/>
<xsd:attribute name="idQ" type="ST_QID" use="optional"/>
<xsd:attributeGroup ref="AG_IDMso"/>
<xsd:attributeGroup ref="AG_Description"/>
<xsd:attrib uteGroup ref="AG_SizeAttributes"/>
<Ixsd:extension>
</xsd:complexContent>
</xsd:complexType>
2.2.14 customUI (Custom Ul Document Root)
This element specifies the root tag in a Custom Ul XML document.
The following table summarizes the child elements of this element.
Child Elements Section
commands (List of Repurposed Commands) 2.2.9
ribbon (Ribbon) 2.2.33

The following table summarizes the attributes of this element.

For example, consider the following XML fragment:

<customuUl xml ns="2¢

In this example, the LoadlmageFunction

The possible valu es for this attribute are defined by the
specified in section 2.3.2 .

Attributes Description

loadimage Specifies the name of a callback function to be called when the application needs to load an
(loadlmage image for a control's icon.

callback)

|l oadl mage="Loadl mageFunct

callback is called to load icon images.
ST_Delegate

simple type, as

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

95 / 522

Attributes Description

onLoad (onLoad Specifies the name of a callback function to be called when the Custom Ul file is loaded by
callback) the application.

For example, consider the following XML fragment:

<customUl xmlns="é" onLoad="0OnCustomUl Loaded"
In this example, the OnCustomUILoaded callback function is called when the containing
Custom Ul file is loaded.
The poss ible values for this attribute are defined by the ST _Delegate simple type, as

specified in section 2.3.2.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_CustomUI">
<xsd:sequence>
<xsd:element name=" commands" type="CT_Commands" minOccurs="0" maxOccurs="1"/>
<xsd:element name="ribbon" type="CT_Ribbon" minOccurs="0" maxOccurs="1"/>
<Ixsd:sequence>
<xsd:attribute name="onLoad" type="ST_Delegate" use="optional"/>
<xsd:attribute name="loadlmage " type="ST_Delegate" use="optional"/>
</xsd:complexType>

2.2.15 dialogBoxLauncher (Dialog Box Launcher)
This element specifies a button that is the dialog box launcher control for a ribbon group.

For example, consider a dialog box launcher control, as follows:

Custom Group M=

Al | Dialog Box Launcher

A d;_:p Bookl.xlsx

1 Press F1 far mare help.

2

Figure 7: A dialog box launcher control

This is specified using the following XML fragment:

<group id="customGroup" label="Custom Group">
<dialogBoxLauncher>
<button id="button" screentip="Dialog Box Launcher" />
</dialogBoxLauncher>
</group>

The following table summarizes the elements that are parents of this element.

96 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Parent Elements

group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_DialogLauncher">
<xsd:sequence>
<xsd:element name="button" type="CT_ButtonRegular" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>

</xsd:complexType>

2.2.16 documentControls (List of Document - Specific Quick Access Toolbar Controls)

This element specifies the list of controls on the quick access toolbar which are specific to the
containing file.

For example, consider a set of contro Is on the document -specific quick access toolbar, as follows:
(O @R -
—r® Home Insert FPage Layout
Figure 8: A set of controls on the document - specific quick access toolbar

This is specified using the following XML fragment:

<documentControls>
<control idMso="CalculateNow" />
<control idMso="Hyperlinkinsert" />
</documentControls>

The following table summarizes the elements that are parents of this element.

Parent Elements

gat (section 2.2.32)

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
control (Quick Access Toolbar Control Clone) 2.2.13
separator (Separator) 2.2.34

The following XML schema fragment defines the contents of this element:

97 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

<xsd:complexType name="CT_Qa tltems">
<xsd:sequence>
<xsd:choice minOccurs="0" maxOccurs="1000">
<xsd:element name="control" type="CT_ControlCloneQat"/>
<xsd:element name="button" type="CT_ButtonRegular"/>
<xsd:element name="separator" type="CT_Separator"/>
</xsd:cho ice>
</xsd:sequence>

</xsd:complexType>

2.2.17 dropDown (Drop -down Control)

This element specifies a drop ~ -down control that allows users to make a selection from a list of options.

A drop -down control can optionally have buttons after its selection items.

For example, consider adrop -down control, as follows:

DrapDown | Item 2 =

Item 1
Item 2
Item 3 |
. i
1 Buttan... F

Cr -

Figure 9:Adrop -down control

This is specified using the following XML fragment:

<dropDown id="dropDown" label="DropDown">
<item id="item1" label="Item 1" />
<item id="item2" label="ltem 2" />
<item id="item3" label="Item 3" />
<button id="button" label="Button..." />
</dropDown>

The following table summarizes the elements that are parents of this element.

Parent Elem ents
box (section 2.2.1); group (section 2.2.23)
The following table summarizes the child elements of this element.
Child Elements Section
button (Unsized Button) 2.2.3
item (Selection Item) 2.2.24
The following table summarizes the attributes of this element.
Att ributes Description
enabled (enabled Specifies the enabled state of the control.
state) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

98 / 522

Att ributes

Description

specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built -in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifiesanew button thatis disabled. A permanen tly disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.
getEnabled Specifies the name of a callback function to b e called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application

needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST Delegate simple type, as

specified in section 2.3.2 .
getimage Specifies the name of a callback function to be called to determine the icon of this control.
(gﬁgm%’e The getimage , image ,and imageMso attributes are mutually exclusive. If none of these
callbac

attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:

<button id="button" getimage="GetButtonimage" />

In this example, the GetButtonimage callback function is called when the application
needs to determine the icon of the button

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST _Delegate simple type, as

getltemCount

Specifies t he name of a callback function to be called to determine the number of selection

(getltemCount items in this control.

callback) If this attribute is omitted, the control SHOULD display any selection items that are
specified as child elements. If no such items are specified, the ¢ ontrol SHOULD be empty.
For example, consider the following XML fragment:

<gallery id="gallery" getltemCount="GetGalleryltemCount" />

In this example, the GetGalleryltemCount callback function is called when the application
needs to determine the number of items in the gallery.
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getltemID Specifies the name of a callback function to be called to determine the identifier of a

(getltemID specific dynamically -created selection item, identified by index.

callback) If this attribute is omitted, dynamically -created selection items SHOULD have empty

identifiers.
For example, consider the following XML fragment:

99 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Att ributes Description

<gallery id="gallery" getltemCount="GetGal leryltemCount"
getltemID="GetGalleryltemID" />

In this example, the GetGalleryltemID callback function is called when the application
needs to determine the identifier of a selection item.

The possible values for this attribute are defined by the ST_Del egate simple type, as
specified in section 2.3.2.

getltemimage Specifies the name of a callback function to be called to determine the icon of a specific
(getltemimage dynamically -created selection item, identified by index.
callback) If this attribute is omitted, dynamically ~ -created selection items SHOULD NOT display icons.

For example, consider the following XML fragment:

<gallery id="gallery" getltemCount="GetGalleryltemCount"
getltemimage="GetGalleryltemimage" />

In this example, the GetGallerylteml mage callback function is called when the
application needs to determine the icon of a selection item.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getltemLabel Specifies the name of a callback function to be called to determine the label of a specific
(getltemLabel dynamically -created selection item, identified by index.
callback) If this attribute is omitted, dynamically -created selection items SHOULD NOT display labels.

For example, co nsider the following XML fragment:

<gallery id="gallery" getitemCount="GetGalleryltemCount"
getltemLabel="GetGalleryltemLabel" />

In this example, the GetGalleryltemLabel callback function is called when the application
needs to determine the label of a selection item.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getltemScreentip Specifies the name of a callback function to be called to determine the screentip of a
(getltemScreentip specific dynamically -created selection item, identified by index.
callba ck) If this attribute is omitted, dynamically -created selection items SHOULD use their labels as

their screentips, or display no screentips at all.
For example, consider the following XML fragment:

<gallery id="gallery" getltemCount="GetGalleryltemCount"
getltemScreentip="GetGalleryltemScreentip" />

In this example, the GetGalleryltemScreentip callback function is called when the
application needs to determine the screentip of a selection item.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getltemSupertip Specifies the name of a callback function to be called to determine the supertip of a specific

(getltemSupertip dynamically -created selection item, identified by index.

callback) If this attribute is omitted, dynamically -created selection items SHOULD NOT display
supertips.

For example, consider the following XML fragment:

<gallery id="gallery" getltemCount="GetGalleryltemCount"

100 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Att ributes

Description

getltemSupertip="GetGalleryltemSupertip" />

In this example, the
application needs to de

GetGalleryltemSupertip callback function is called when the
termine the supertip of a selection item.

The possible values for this attribute are defined by the ST_Delegate

specified in section 2.3.2.

simple type, as

getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getkeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control auto matically.
For example, consider the following XML fragment:
<button id="button" getKeytip="GetButtonKeytip" />
In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getLabel (getLabel Specifies the name of a callback function to be called to determine the label of this control.
callback) The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getLabel="GetButtonLabel" />
In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.
The possible values for this attribute are defined by the ST Delegate simple type, as
specified in section 2.3.2.
getScreentip Specifies the name of a callbac k function to be called to determine the screentip of this
(getScreentip control.
callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the bu tton.

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST _Delegate simple type, as

getSelectedlteml
D
(getSelectedlteml
D callback)

Specifies the name of a callback function to be called to determine the identifier of th e item
to be selected in this control.

The getSelectedltemID and getSelectedltemindex attributes are mutually exclusive. If
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

<gallery id="gallery" getltemCount="GetGalleryltemCount"
getltemID="GetltemID"

101 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Att ributes

Description

getSelectedltemID="GetGallerySelectedltemID" />

callback function is called when the
item in the gallery. In this example the callback
GetltemID callback function.

ST_Delegate

In this example, the GetGallerySelectedltemID
application needs to determine the selected
function returns one of the identifiers returned by the

The possible values for this attribute are defined by the
specified in section 2.3.2.

simple type, as

getSelectedlteml
ndex
(getSelectedlteml
ndex callback)

Specifies the name of a callback function to be called to determine the index of the item to
be selected in this control.

The getSelectedltemID and getSelectedltemIndex attributes are mutually exclusive.
neither attribute is specified, the control SHOULD NOT display a selected item.

For example, consider the following XML fragment:

<gallery id="gallery" getltemCount="GetGalleryltemCount"
getSelectedltemindex="GetGallerySelectedltemIndex" />

In thise xample, the GetGallerySelectedltemIndex callback function is called when the

application needs to determine the selected item in the gallery.

The possible values for this attribute are defined by the ST _Delegate simple type, as

specified in section 2.3.2.

getShowlmage
(getShowlmage

Specifies the name of a callback function to be called to determine whether the application
displays the icon of this control.

callback)
The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowlmage="IsButtonimageVisible" />
In this example, the IsButtonlmageVisible callback function is called when the
application needsto determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be ca lled to determine whether the application
(getShowLabel displays the label of this control.
callback)
The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.
For example, consider the following XML fragment:
<button id="button" getShowLabel="IsButtonLabelVisible" />
In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getSupertip Specifies the name of a callback function to be called to determine the supertip of this
(getSupertip control.
callback) The getSupertip and superti p attributes are mutually exclusive. If neither attribute is

specified, no supertip for this control SHOULD be shown.

102 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Att ributes

Description

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSup ertip callback function is called when the application
needs to determine the supertip of the button

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getVisible Specif ies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, ¢ onsider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

which control corresponds to the function call.

The id, idQ, and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an id of "MyButton".

The possible values for this attribute are defined by the ST _UniquelD simple type, as
specified in section 2.3.13 .

idMso (built -in
control identifier)

Specifies the identifier of a built -in control.
The contents of this attribute are application -defined.
The id, idQ , and idMso attributes are mutually exclusive. At least one of these attributes

MUST be specified.
For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as speci fied in
section 2.3.5 .

idQ (qualified
control identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
Ul documents.

The id, idQ , and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

103 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Att ributes

Description

<customUl
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmlins:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:OtherTab" label="Shared Tab">
<group id="MyGroup" label="My Group">
é

</group>
</tab>
</tabs>
</ribbon>
</customUlI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If

that tab cannot be found, it is created. A new group belonging to this file is added to the
tab .
The possible values for this attribute are defined by the ST_QID simple type, as specified

in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image to be used as the icon for this control. This
attribute is used to specify an embedded picture that resides locally within the containing
file.

The getimage , image ,and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon is the embedded image file referenced by the
relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST _Uri simple type, as specified in
section 2.3.14 .

image identifier)

imageMso (built -in

Specifies the identifier of a built -inimage to be used as the icon of this control.
The contents of this attribute are application -defined and SHOULD be ignored if not
understood.

The getlimage , image ,and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHO ULD be displayed.

For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

after)

This specifies a custom button that uses the built -in image with an identifier of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso Specifies the identifier of a built -in control that this control is to be inserted after. If the

(identifier of built ~ -in value of this attribute is not understood, it SHOULD be ignored.

control to insert The insertAfterMso , insertAfterQ |, insertBeforeMso , and insertBeforeQ attributes are

mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" inse rtAfterMso="TabHome" label="Custom Tab">
é

104 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Att ributes

Description

</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built -in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

section 2.3.5.

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control is to be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined i n the XML.

attributes are

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
é
</tab>

In this example, a new custom
custom tab with a qualified id

tab with an identifier of "MyTab" is to be inserted after the
entifier of "x:OtherTab".

The possible values for this attribute are defined by the
in section 2.3.9.

ST_QID simple type, as specified

insertBeforeMso
(identifier of built ~ -in
control to insert

Specifies the identifier of a built -in control that th s control is to be inserted before. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ attributes are
before) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
é
</tab>
In this example, anew cus tom tab with an identifier of "MyTab" is to be inserted before the
built -in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertBeforeQ Specifies the qualified identifier of a control that this control is to be inserted before. If the

(qualified identifie r
of control to insert
before)

value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

attributes are

For example, consider the following XML fragment:

<tab id
é
</tab>

="MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute a
in section 2.3.9.

re defined by the ST_QID simple type, as specified

keytip (keytip)

Specifiesa string to be used as the suggested KeyTip for this control.

105 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Att ributes Description

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

0

aar
This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible value s for this attribute are defined by the ST _Keytip simple type, as
specified in section 2.3.7 .

label (label) Specifies a string to be used as the label for this control.

The label and getLabel att ributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .

onAction Specifies the name of a callback function to be calle d when this control is invoked by the
(onAction callback) user.

For example, consider the following XML fragment:

<button id="button" label="Button" onAction="ButtonClicked" />

This specifies a button that calls the ButtonClicked callback function when it is invoked.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

screentip Specifiesa string to be shown as the screentip for this control.

(screentip) The screentip and getScreentip attributes are mutuall y exclusive. If neither attribute is
specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
A
=y
Buttan

Custo dl_ll_il_m____‘_hh

This i5s the screentip

IZEI Bool3.xlsx .E
1 Press F1 far more help.
=
This is specified using the following XM L fragment:

<button id="button" imageMso="HappyFace" label="Button"

106 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Att ributes Description

size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showlmage (show Specifies whether this control displays an icon.

image)
The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group

This is specified using the following XML fragment:

<button id="button" showlmage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

showltemlmage Specifies whether this control displays icons on its selection items.
(show item image) If this attribute is omitted, the items' icons SHOULD be shown by default.
For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showltemimage="false" >
<item id="item1" label="ltem 1" />
<item id="item?2" label="ltem 1" />
<item id="item3" label="ltem 2" />
<item id="item4" label="ltem 3" />
</gallery>

This specifies a gallery control that does not show any icons on its selection items.
The possibl e values for this attribute are defined by the XML schema boolean datatype.

showltemLabel Specifies whether this control displays labels on its selection items.
(show item label) If this attribute is omitted, the item's labels SHOULD be shown by default.
For example, consider the following XML fragment:

<gallery id="gallery" label="Gallery" showltemLabel="false" >
<item id="item1" image="Forest" />
<item id="item2" image="Desert" />
<item id="item3" image="Mountain" />
<item id="item4" image="Ocean ">
</gallery>

This specifies a gallery control that does not show any labels on its selection items.
The possible values for this attribute are defined by the XML schema boolean datatype.

showlLabel (show Specifies whether this control displays it s label.
label)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

107 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Att ributes

Description

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel=" false"
imageMso="HappyFace" />

This specifiesa button that hasa label , but does not show it. Even though the
hidden, it is provided to accessibility tools.

label is

The possible values for this attribute are defined by the XML schema boolean datatype.

sizeString
string)

(size

Specifiesa string whose size is used to determine the width of the text input area of this
control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

<editBox id="editBox" sizeString="WWWWWWWWWWWWW" />

This specifies an edit box control that is wide enough to display the string

The possible values for this attribute are defined by the ST_String simple type, as

specified in section 2.3.11.

supertip

(supertip)

Specifies a string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

N
.":":l./.

Button

Custam Group

QL,}I Book3.xlsx
Press F1 for mare help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as

specified in section 2.3.11.

tag (tag)

Specifies an arbitrary ~ string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"

string

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

108 / 522

Att ributes Description

onAction="ButtonClicked" />

This specifiesa button witha tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being vis ible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built -in tab with an identifier of "TabHome" is hidden.

The possible values for this attribute are defined by the XML schema boolean dataty pe.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_DropDownRegular">
<xsd:complexContent>
<xsd:extension base="CT_Control">
<xsd:sequence>
<xsd:element name="item" type="CT_Item" minOccurs="0" maxOccurs="1000"/>
<xsd:element name="button" type="CT_ButtonRegular" minOccurs="0" maxOccurs="16"/>
<Ixsd:sequence>
<xsd:attributeGroup ref="AG_Action"/>
<xsd:attributeGroup ref="AG_Enabled"/>

<xsd:attributeGroup ref="AG_Image"/>
<xsd:attributeGroup ref="AG_DropDownAttributes"/>
<xsd:attribute name="getSelectedltemID" type="ST_Delegate" use="optional"/>
<xsd:attribute name="getSelectedltemIndex" type="ST_Delegate" use="optional"/>
<xsd:attribute name="showltemLabel" type="x sd:boolean" use="optional"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.18 dynamicMenu (Unsized Dynamic Menu)

This element specifies a dynamic menu control that, because of its location, cannot have its anchor
size changed. The size attribute is not present. It otherwise behaves identically to the regular
dynamicMenu element, as specified in section 2.2.19 .

The following table summarizes the elements that are parents of this element.

Parent Elements

buttonGroup (section 2.2.5); menu (section 2.2.28); menu (section 2.2.26); menu (section 2.2.29); menu
(section 2.2.27); officeMenu (section 2.2.31)

The following table summarizes the attributes of this element.

Attributes Description

description Specifies a detailed description of the control, which SHOULD be displayed in detailed

109 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

(description) views.
The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detaile d text.

For example, consider a button with a detailed description, as follows:

e | Button

Pt - Zrr -
\:-" This is a verbose description that describes
the function of this contral in detail,

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail.” />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8 .

enabled (enabled
state)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built -in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attribute are defined by the XML schema boolean datatype.

getContent
(getContent
callback)

Specifies the name of a callback function to be called when the application needs to
determine the conte nts of the control.

For example, consider a dynamic menu control, as follows:

Dynamic Menu = |

Button 1
Button 2
|
=

Buttaon 3
L |

This is specified using the following XML fragment:

<dynamicMenu id="dynamic" label="Dynamic Menu"
getContent="GetMenuContent" />

The GetMenuContent callback function is cal led when the menu is dropped, and in this
case would return a string with the following XML:

<menu
xmlns="http://schemas.microsoft.com/office/2006/01/customui">
<button id="button1" label="Button 1" />
<button id="button2" label="Button 2" />
<butto n id="button3" label="Button 3" />

110 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

</menu>

The possible values for this attribute are defined by the
specified in section 2.3.2 .

ST Delegate simple type, as

getDescription

Specifies the name of a callback function to be called to determine the detailed description

(getDescription of this control.
callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For exampl e, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for th is attribute are defined by the ST Delegate simple type, as
specified in section 2.3.2.
getimage Specifies the name of a callback function to be called to determine the icon of this control.
(getimage The getimage , image ,and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getimage="GetButtonimage" />
In this example, the GetButtonimage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the nam e of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getkeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the applic ation SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:
<button id="button" getKeytip="GetButtonKeytip" />
In this example, the GetButtonKeytip callback function is called when the application
needs t o determine the KeyTip of the button.
The possible values for this attribute are defined by the ST Delegate simple type, as
111 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

specified in section 2.3.2.

getLabel (getLabel Specifies the name of a callback function to be called to determine the label of this control.
callback) The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getLabel="GetButtonLabel" />
In this exa mple, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.
The possible values for this attribute are defined by the ST Delegate simple type, as
specified in section 2.3.2.
getScreentip Specifies the name of a callback function to be called to determine the screentip of this
(getScreen tip control.
callback)

The getScreentip and screentip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD display the label o f the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip
needs to determine the screentip of the button.

callback function is called when the application

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST Delegate simple type, as

getShowlmage
(getShowlmage

Specif ies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

callback)
The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.
For example, consider the following XML fragment:
<button id="button" getShowlmage="IsButtonimageVisible" />
In this example, the IsButtonlmageVisible callback function is called when the
application needs to determine whether to display the icon of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getShowLabel Specifies the name of a callback function to be called to determine whether the applicat ion
(getShowLabel SHOULD display the label of this control.
callback)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<buttoni d="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine whether to display the label of the button.

The possible values for this attribute are defined b ythe ST Delegate simple type, as

112 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

specified in section 2.3.2.

getSupertip Specifies the name of a callback function to be called to determine the supertip of this
(getSupertip control.
callback) The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.
For example, consider the following XML fragment:
<button id="button" getSupertip="GetButtonSupertip" />
In this example, the GetButtonSupe rtip callback function is called when the application
needs to determine the supertip of the button.
The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.
getVisible Specifi es the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, co nsider the following XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attri bute are defined by the ST Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callba ck functions to identify

which control corresponds to the function call.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" | abel="Button" />

This specifies a custom button control with an identifier of "MyButton".

idMso (built -in
control identifier)

The possible values for this attribute are defined by the ST _UniquelD simple type, as
specified in section 2.3.13 .

Specifies the identifier of a built -in control.

The contents of this attribute are application -defined.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specif ied.

For example, consider the following XML fragment:

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in

section 2.3.5 .

idQ (qualified

Specifies a qualified identifier for a control.

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

113 / 522

Attributes

Description

control identifier)

The idQ attribute can be used to reference controls or containers created by other Custom
Ul documents.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUl
xmins="http://schemas.microsoft.com/office/2006/01/customui"
xmins:ex="http://www.ex ample.com">
<ribbon>
<tabs>

<tab idQ="ex:OtherTab" label="Shared Tab">
<group id="MyGroup" label="My Group">
é

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the

tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified

in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image whi ch SHOULD be used as the icon
control. This attribute is used to specify an embedded picture that resides locally within the
containing file.

for this

The getlimage , image ,and imageMso attributes are mutually exclusive. If none of these

attributes are spec ified, no icon SHOULD be displayed.
For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestP ic".

The possible values for this attribute are defined by the ST _Uri simple type, as specified in

section 2.3.14 .

image identifier)

imageMso (built -in

Specifies the identifier of a built -in image that is used as the icon of this control.
The contents of this attribute are application -defined and SHOULD be ignored if not
understood.

The getlimage , image ,and imageMso attributes are mutually exclusive. If none of these

attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:

<button id="button" imageMso="Bold" />

(identifier of built
control to insert

-in

value of this attribute is not understood, it SHOULD be ignored.
The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ attri

This specifies a custom button that uses the built -inimage with an identifier of "Bold".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.

insertAfterMso Specifies the identifier of a built -in control that this control is to be inserted after. If the

butes are

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

114 | 522

Attributes Description
after) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
é
</tab>
In this example, a new cus tom tab with an identifier of "MyTab" is to be inserted after the
built -in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertAfterQ Specifies the qualified identifier of a control that this control SHOULD be inserted after. If

(qualified identifier
of control to insert
after)

the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBef oreQ attributes are
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:
<tab id="MyTab"

é
</tab>

insertAfterQ="x:OtherTab" label="Custom Tab">

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the ST_QID simple type, as specified

in section 2.3.9.

insertBeforeMso
(identifier of built ~ -in
control to insert

Specifies the identifier of a built -in control that this control SHOULD be inser ted before. If

the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ attributes are

before) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
é
</tab>
In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built -in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertBeforeQ Specifies the qualified identifier of a control that this control SHOULD be inserted before. If

(qualified identifier
of control to insert
before)

the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

attribu tes are

For example, consider the following XML fragment:
<tab id="MyTab" insertBefore Q="x:OtherTab" label="Custom Tab">
é
</tab>

115 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the
in section 2.3.9.

ST_QID simple type, as specified

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control SHOULD invalidate its contents and re
the user opens its drop -down menu.

d, its value SHOULD default to false.
For example, consider the following XML fragment:

If this attribute is omitte

<comboBox id="comboBox" getltemCount="GetComboBoxIltemCount"
getltemLabel="GetComboBoxItemLabel"
invalidateContentOnDrop="true" />

In this example, this combo box cl earsoutitsitemsandre -calls the

-query for them when

GetComboBoxIltemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.
The possible values for this attribute are defined by the XML schema boolean datatype.

keytip (keyti p) Specifies a string to be used as the suggested KeyTip for this control.
The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.
For example, ¢ onsider a button with KeyTip 'K, as follows:
This is specified using the following XML fragment:
<button id="button" imageMso="HappyFace" keytip="K" />
The possible values for this attribute are defined by the ST _Keytip simple type, as
specified in sect ion 2.3.7 .
label (label) Specifiesa string to be used as the label for this control.
The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" label="Custom Button" />
This specifies a custom button with a label of "Custom Butto n".
The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11 .
screentip Specifiesa string to be shown as the screentip for this control.
(screentip) The screentip and getScreentip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a sc reentip, as follows:

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

116 / 522

Attributes Description

| _i - L] 'I
"\-:.-_“:;'
Button

Custam Group

This is the screentip

li;_:':rl Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

attribute is specified, the control SHOULD display its icon.
For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Group
This is specified using the following XML fragment:

<button id="button" showlmage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the ST_String simp le type, as
specified in section 2.3.11.

showlmage (show Specifies whether this control displays an icon.

image)
The showlmage and getShowlmage attributes are mutually exclusive. If neither

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

The possible values for this attribute are defined by the XML schema boolean datatype.
showlLabel (show Specifies whether this control SHOULD display its label.
label)

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute

is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This sp ecifiesa button that has a label , but does not show it. Even though the label is

hidden, it is provided to accessibility tools.

The possible values for this attribute are defined by the XML schema datatype.
supertip (supertip) Specifiesa string to be shown as the supertip of the control.

117 / 522

Attributes Description

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

_j--]
.__::,-/.
Button

Custam Group

§ g [

i Book3.xlsx
2 Press F1 for mare help,
2

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String sim ple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary ~ string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

This specifiesa button with a tag value of "123456", w hich is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisi ble and visible attributes are mutually exclusive. If these attributes are
omitted, the control SHOULD default to being visible.

For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

In this example, the built -intab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_DynamicMenuRegular">
<xs d:complexContent>

118 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

<xsd:extension base="CT_ControlBase">
<xsd:attributeGroup ref="AG_Description"/>
<xsd:attributeGroup ref="AG_|DAttributes"/>
<xsd:attributeGroup ref="AG_GetContentAttributes"/>
<xsd:attributeGroup ref="AG_DynamicContentAttr ibutes"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

2.2.19 dynamicMenu (Dynamic Menu)
This element specifies a dynamic menu control that populates its contents dynamically.

For example, considera dynamic menu control, as follows:

Dynamic Menu =

Button 1
Button 2
{
=

Button 3

A

Figure 10 : A dynamic menu control

This is specified using the following XML fragment:

<dynamicMenu id="dynamic" label="Dynamic Menu" getContent="GetMenuContent" />

The GetMenuContent callback f unction is called when the menu is dropped, and in this case would
return a string with the following XML:

<menu xmIns="http://schemas.microsoft.com/office/2006/01/customui">
<button id="button1" label="Button 1" />
<button id="button2" label="Button 2" />
<button id="button3" label="Button 3" />

</menu>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the attributes of this element.

Attributes Description
description Specifies a detailed description of the control, which SHOULD be displayed in detailed
(description) views.
The description and getDescription attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For example, consider a button with a detailed descript ion, as follows:

119 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

» o Button

p | - e .
‘:f This is a verbase description that describes
the function of this control in detail.

This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
description="This is a verbose description that describes
the function of this control in detail." />

The possible values fo r this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8 .

enabled (enabled Specifies the enabled state of the control.

state) The getEnabled and enabled attrib utes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built -in control that would otherwise be disabled
by the application.

For example, consider the following XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for this attr ibute are defined by the XML schema boolean datatype.
getContent Specifies the name of a callback function to be called when the application needs to
(getContent determine the contents of the control.

callback) For example, consider a dynamic menu control, as follows:

Dynamic Menu x|

Button 2
Button 3

Lt |

This is specified using the following XML fragment:

‘ Button 1
{
=

<dynamicMenu id="dynamic" label="Dynamic Menu"
getContent="GetMenuContent" />

The GetMenuContent callback function is called when the menu is dropped, and in this
case would return a string with the following XML:

<menu
xmins="http://schemas.microsoft.com/office/2006/01/customui">
<button id="button1" label="Button 1" />
<button id="button2" label="Button 2" />

<button id="button3" label ="Button 3" />
</menu>
The possible values for this attribute are defined by the ST_Delegate simple type, as

specified in section 2.3.2 .

120 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

getDescription

Specifies the name of a callback function to be called to determine the detailed description

(getDescription of this control.
callback) The getDescription and description attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD NOT display any detailed text.
For e xample, consider the following XML fragment:
<button id="button" getDescription="GetButtonDescription" />
In this example, the GetButtonDescription callback function is called when the
application needs to determine the detailed description of the button.
The possible values for this attribute are defined by the ST Delegate simple type, as
specified in section 2.3.2.
getEnabled Specifies the name of a callback function to be called to determine the enabled state of this
(getEnabled control.
callback) The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.
For example, consider the following XML fragment:
<button id="button" getEnabled="IsButtonEnabled" />
In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.
The possible values for this attribute are defined by the ST Delegate simple type, as
specified in section 2.3.2.
getimage Specifies the name of a callback function to be called to determine the icon of this control.
(getimage The getimage , image ,and imageMso attributes are mutually exclusive. If none of these
callback) attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getimage="GetButtonimage" />
In this example, the GetButtonimage callback function is called when the application
needs to determine the icon of the button.
The possible values for this attribute ar e defined by the ST_Delegate simple type, as
specified in section 2.3.2.
getKeytip Specifies the name of a callback function to be called to determine the suggested KeyTip of
(getKeytip this control.
callback) The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.
For example, consider the following XML fragment:
<button id="button" getKeytip="GetButtonKeytip" />
In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.
The possible values for this attribute are defined by the ST_Delegate simple type, as
specifie d in section 2.3.2.
getLabel (getLabel Specifies the name of a callback function to be called to determine the label of this control.
callback) The getLabel and label attributes are mutually exclusive. If neither attribute is specified,

no label SHOULD be displayed.

121 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

For example, consider the following XML fragment:

<button id="button" getLabel="GetButtonLabel" />

In this example, the GetButtonLabel callback function is called when the application needs
to determine the label of the button.

The possible val ues for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getScreentip Specifies the name of a callback function to be called to determine the screentip of this
(getScreentip control.
callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider the following XML fragment:

<button id="button" g etScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip callback function is called when the application
needs to determine the screentip of the button.

The possible values for this attribute are defined by the ST Delegate simple type, as
specified in section 2.3.2.

getShowlmage Specifies the name of a callback function to be called to determine whether the application
(getShowlmage SHOULD display the icon of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the

control is "large".

The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id=" button" getShowlmage="IsButtonimageVisible" />

In this example, the IsButtonlmageVisible callback function is called when the
application needs to determine whether to display the icon of the button.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getShowLabel Specifies the name of a callback function to be called to determine whether the application
(getShowLabel SHOULD displ ay the label of this control.
callback) This attribute SHOULD have no effect if the size or getSize attributes specify that the

control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOUL D default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible callback function is called when the application
needs to determine wheth er to display the label of the button.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getSize (getSize Specifies the name of a callback function to be called to determine the siz e of this control.
callback) The getSize and size attributes are mutually exclusive. If neither attribute is specified, the
122 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

control's size SHOULD default to the normal size.
For example, consider the following XML fragment:

<button id="button" getSize="GetButtonSize ">

In this example, the GetButtonSize callback function is called when the application needs
to determine the size of the button.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getSupertip Specifies the name of a callback function to be called to determine the supertip of this
(getSupertip control.
callback)

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this con trol SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupertip callback function is called when the application
needs to determine the supertip of the bu tton.
The possible values for this attribute are defined by the ST _Delegate simple type, as

specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible contr ol.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is

specified, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<button id="button" getVisible="IsButtonVisible" />

In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify
which control corresponds to the function call.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button" />

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13 .

idMso (built -in Specifies the identifier of a bu ilt-in control.
control identifier) The contents of this attribute are application -defined.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

123 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

<control idMso="Bold" / >

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified
cont rol identifier)

Specifies a qualified identifier for a control.

The idQ attribute can be used to reference controls or containers created by other Custom
Ul documents.

The id, idQ , and idMso attributes are mutually exclusive. At least one of these attribut es
MUST be specified.

For example, consider the following XML fragment:

<customUl
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmins:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:OtherTab" label="Shared Tab">
<group id="MyGroup" label="My Group">
é

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace http://www.example.com.
This XML fragment refers to a tab in that name space with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the

tab.

The possible values for this attribute are defined by the ST_QID simple type, as specified
in section 2.3.9 .

image (custom
image identifier)

Specifies the relationship identifier for an image which SHOULD be used as the icon for this
control. This attribute is used to specify an embedded picture that resides | ocally within the
containing file.

The getlmage , image ,and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="For estPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14 .

imageMso (built -in
image identifier)

Specifies the identifier of a built -in image which SHOULD be used as the icon of this control.
The contents of this attribute are application -defined and SHOULD be ignored if not
understood.

The getimage , image ,and imageMso attributes are mutually exclusive. If none of these

attributes are specified, no icon SHOULD be displayed.
For example, consider the following XML fragment:

124 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

<button id="button" imageMso ="Bold" />

This specifies a custom button that SHOULD use the built
"Bold".

The possible values for this attribute are defined by the
section 2.3.5.

-in image with an identifier of

ST_ID simple type, as specified in

insertAfterMso
(identifier of built ~ -in
control to insert

Specifies the identifier of a built -in control that this control SHOULD be inserted after. If the
value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ attributes are
after) mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.
For example, consider the following XML fragment:
<tab id="MyTab" inse rtAfterMso="TabHome" label="Custom Tab">
é
</tab>
In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built -in tab with an identifier of "TabHome".
The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5.
insertAfterQ Specifies the qualified identifier of a control that this control SHOULD be inserted after. If

(qualified identifier
of control to insert
after)

the value of this attribute is not understood, it SHOUL

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

D be ignored.
attributes are

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterQ="x:OtherTab" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the
in section 2.3.9.

ST_QID simple type, as specified

insertBeforeMso
(identifier of built ~ -in
control to insert
before)

Specifies the identifier of a built -in control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ attributes are
mutually exclusive. If none of these attributes are specifie d, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built -in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the
section 2.3.5.

ST_ID simple type, as specified in

125/ 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

insertBeforeQ
(qualified identi fier
of control to insert
before)

Specifies the qualified identifier of a control that this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and in sertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

attri

For example, consider the following XML fragment:

<tab id="
é
</tab>

MyTab" insertBeforeQ="x:OtherTab" label="Custom Tab">

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by the
in section 2.3.9.

butes are

ST_QID simple type, as specified

invalidateContent
OnDrop (invalidate
content on drop)

Specifies whether this control SHOULD invalidate its contents and re
the user opensits drop -down menu.

If this attribute is omitted, its value SHOULD default to false.
For example, consider the following XML fragment:

<comboBox id="comboBox" getltemCount="GetComboBoxIltemCount"
getltemLabel="GetComboBoxIltemLabel"
invalidate ContentOnDrop="true" />

In this example, this combo box clears out its items and re -calls the

-query for them when

GetComboBoxItemCount and GetComboBoxItemLabel callback functions to populate
its contents each time the user opens it.
The possible values for this attribute are defined by the XML schema boolean datatype.

keytip (keytip)

Specifies a string

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD gener ate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

1

=

to be used as the suggested KeyTip for this control.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are
specified in section 2.3.7 .

defined by the ST_Keytip

simple type, as

label (label)

Specifies a string to be used as the label for this control.

The label and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

of "Custom Butto n".
ST_String

This specifies a custom button with a label

The possible values for this attribute are defined by the
specified in section 2.3.11 .

simple type, as

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

126 / 522

Attributes Description

screentip Specifies a string to be shown as the screentip for this control.

(screentip) The screentip and getScreentip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:
LA
.__:‘:-/.
Buttan

Custa dl_lld:_l_-m___h__h

This is the screentip

GIGI Book3.xlsx
Press F1 far more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attrib ute are defined by the ST_String simple type, as
specified in section 2.3.11.

showlmage (show Specifies whether this control displays an icon.

image) This attribute SHOULD have no effect if the size or getSize attributes specify that the
control is "large "

The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<button id="button" showlmage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.
showlLabel (show Specifies whether this control SHOULD display its label.
label) This attribute SHOULD have no effect if the size or getSize attributes specify that the

control is "large".

The showLabel and getShowLabel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"

127 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

imageMso="HappyFace" />

This specifiesa button that hasa label , but does not show it. Even though the label is
hidden, it is provided to accessibil ity tools.
The possible values for this attribute are defined by the XML schema boolean datatype.

size (control size)

Specifies the size of the control.

The size and getSize attributes are mutually exclusive. If neither attribute is specified, the
control's size SHOULD default to the normal size.

For example, consider a large button, as follows:

B

Balel

Custam Group
This is specified using the following XML fragment:

<toggleButton idMso="Bold" size="large" />

The possible values for this attribute are defined by the ST_Size simple type, as specified
in section 2.3.10 .

supertip (supertip)

Specifies a string to be shown as the supertip o f the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example, consider a control with a supertip, as follows:

LA
1 "':fl./'.

Button

Custam Group

J_ -

i Book3 xlsx
2 Press F1 for mare help.
2

This is specified using the follow ing XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in sect ion 2.3.11.

tag (tag)

Specifies an arbitrary ~ string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this
control.

If this attribute is omitted, the control's tag value SHOULD default to an empty string
For example, consider the following XML fragment:

128 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

<button id="button" label="Button" tag="123456"
onAction="ButtonClicked" />

ButtonClicked callback function.

This specifiesa button witha tag value of "123456", which is passed to the

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are

omitted, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<tab idMso="TabHome" visible="false" />

The possible values for this attribute are defined by the XML schema

In this example, the built -in tab with an identifier of "TabHome" is hidden.

boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_DynamicMenu">
<xsd:complexContent>
<xsd :extension base="CT_DynamicMenuRegular">
<xsd:attributeGroup ref="AG_SizeAttributes"/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

2.2.20 editBox (Edit Box)
This element specifies an edit box control that allows a user to enter a string

For example, consider an edit box control, as follows:

Eclit Bay tex

Custom Graup
Figure 11 : An edit box control

This is specified using the following XML fragment:

<editBox id="editBox" label="Edit Box" />

The following table summarizes the elements that are parents of this element.

of text.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

129 / 522

The following table summarizes the attributes of this element.

Attributes

Description

enabled (Enabled
State)

Specifies the enabled state of the control.

The getEnabled and enabled attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being enabled.

This attribute cannot be used to enable a built -in control that would otherwise be disabled
by the application.

For example, consider the fo llowing XML fragment:

<button id="button" label="Disabled Button" enabled="false" />

This specifies a new button that is disabled. A permanently disabled button is not very
useful, thus the enabled attribute is not commonly used.

The possible values for th is attribute are defined by the XML schema boolean datatype.

getEnabled
(getEnabled
callback)

Specifies the name of a callback function to be called to determine the enabled state of this
control.

The getEnabled and enabled attributes are mutually exclusi ve. If neither attribute is
specified, the control SHOULD default to being enabled.

For example, consider the following XML fragment:

<button id="button" getEnabled="IsButtonEnabled" />

In this example, the IsButtonEnabled callback function is called when the application
needs to determine the enabled state of the button.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2 .

getimage
(get Image
callback)

Specifies the name of a callback function to be called to determine the icon of this control.

The getimage , image ,and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For e xample, consider the following XML fragment:

<button id="button" getimage="GetButtonlmage" />

In this example, the GetButtonlmage callback function is called when the application
needs to determine the icon of the button

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getKeytip
(getKeytip
callback)

Specifies the name of a callback function to be called to determine the suggested KeyTip of

this control.

The getKeytip and keytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider the follo wing XML fragment:

<button id="button" getKeytip="GetButtonKeytip" />

In this example, the GetButtonKeytip callback function is called when the application
needs to determine the KeyTip of the button.

The possible values for this attribute are defined by the ST_Delegate simple type, as
specified in section 2.3.2.

getLabel (getLabel

Specifies the name of a callback function to be called to determine the label of this control.

130 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

callback) The getLabel and label attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.
For example, consider the following XML fragment:
<button id="button" getLabel="GetButtonLabel" />
In this example, the GetButtonLabel callback functi on is called when the application needs
to determine the label of the button.
The possible values for this attribute are defined by the ST Delegate simple type, as
specified in section 2.3.2.
getScreentip Specifies the name of aca llback function to be called to determine the screentip of this
(getScreentip control.
callback) The getScreentip and screentip attributes are mutually exclusive. If neither attribute is

specified, the application SHOULD display the label of the control as the screentip or displa
no screentip at all.

For example, consider the following XML fragment:

<button id="button" getScreentip="GetButtonScreentip" />

In this example, the GetButtonScreentip
needs to determine the screentip of the button.

The possible values for this attribute are defined by the
specified in section 2.3.2.

ST_Delegate

callback function is called when the application

simple type, as

getShowlmage
(getShowlmage
callback)

Specif ies the name of a callback function to be called to determine whether the application
SHOULD display the icon of this control.

The showlmage and getShowlmage attributes are mutually exclusive. If neither
attribute is specified, the control SHOULD display its icon.

For example, consider the following XML fragment:

<button id="button" getShowlmage="IsButtonimageVisible" />

callback function is called when the
of the button.

ST_Delegate

In this example, the IsButtonlmageVisible
application needs to determine whether to display the icon

The possible values for this attribute are defined by the
specified in section 2.3.2.

simple type, as

getShowLabel
(getShowLabel
callback)

Specifies the name of a callback function to be called to determine whether the applicat
SHOULD display the label of this control.

The showLabel and getShowLabel
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" getShowLabel="IsButtonLabelVisible" />

In this example, the IsButtonLabelVisible
needs to determine whether to display the label of the button.

The possible values for this attribute are defined by the ST_Delegate

specified in section 2.3.2.

ion

attributes are mutually exclusive. If neither attribute

callback function is called when the application

simple type, as

getSupertip
(getSupertip

Specifies the name of a callback function to be called to determine the supertip of this

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

131 / 522

Attributes

Description

callback)

control.

The getSupertip and supertip attributes are mutually exclusive. If neither attribute is
specified, no supertip for this control SHOULD be shown.

For example, consider the following XML fragment:

<button id="button" getSupertip="GetButtonSupertip" />

In this example, the GetButtonSupe rtip callback function is called when the application
needs to determine the supertip of the button.

The possible values for this attribute are defined by the ST Delegate simple type, as
specified in section 2.3.2.

getText (getText
callback)

Specifies the name of a callback function to be called to determine the text that SHOULD be
displayed in the control.

For example, consider the following XML fragment:

<editBox id="editBox" getText="GetEditBoxText" />

In this example, the GetEditBoxText callback functi on is called when the application needs
to determine the text to display in the control.

The possible values for this attribute are defined by the ST _Delegate simple type, as
specified in section 2.3.2.

getVisible Specifies the name of a callback function to be called to determine the visibility state of this
(getVisible control.
callback) The getVisible and visible attributes are mutually exclusive. If neither attribute is
specified, the control SHOULD default to being visible.
For example, consider the f ollowing XML fragment:
<button id="button" getVisible="IsButtonVisible" />
In this example, the IsButtonVisible callback function is called when the application needs
to determine the visibility of the button.
The possible values for this attribute are def ined by the ST_Delegate simple type, as
specified in section 2.3.2.
id (control Specifies the identifier for a custom control. All custom controls MUST have unique
identifier) identifiers. The identifier of a control SHOULD be passed to callback functions to identify

which control corresponds to the function call.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<button id="MyButton" label="Button ">

This specifies a custom button control with an identifier of "MyButton".

The possible values for this attribute are defined by the ST_UniquelD simple type, as
specified in section 2.3.13 .

idMso (built -in
control identifier)

Specifies the identifier of a built -in control.
The contents of this attribute are application -defined.

The id, idQ ,and idMso attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For e xample, consider the following XML fragment:

132 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

<control idMso="Bold" />

This creates a clone of the control with an identifier of "Bold".

The possible values for this attribute are defined by the ST_ID simple type, as specified in
section 2.3.5 .

idQ (qualified Specifies a qualified identifier for a control.

control identifier) The idQ attribute can be used to reference controls or containers created by other Custom

Ul documents.

The id, idQ , and idM so attributes are mutually exclusive. At least one of these attributes
MUST be specified.

For example, consider the following XML fragment:

<customUl
xmlns="http://schemas.microsoft.com/office/2006/01/customui"
xmins:ex="http://www.example.com">
<ribbon>
<tabs>
<tab idQ="ex:OtherTab" label="Shared Tab">
<group id="MyGroup" label="My Group">
é

</group>
</tab>
</tabs>
</ribbon>
</customUI>

In this case, ex is an XML namespace prefix for the namespace htt p:/lwww.example.com.
This XML fragment refers to a tab in that namespace with an identifier of "OtherTab". If
that tab cannot be found, it is created. A new group belonging to this file is added to the

tab.
The possible values for this attribute are define dbythe ST _QID simple type, as specified
in section 2.3.9 .

image (custom Specifies the relationship identifier for an image which SHOULD be used as the icon for this

image identifier) control. This attribute is used to specify an embedded picture that resides locally within the

containing file.

The getlmage , image ,and imageMso attributes are mutually exclusive. If none of these
attributes are specified, no icon SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" image="ForestPic" />

This specifies a custom button whose icon SHOULD be the embedded image file referenced
by the relationship identifier of "ForestPic".

The possible values for this attribute are defined by the ST_Uri simple type, as specified in
section 2.3.14 .

imageMso (built -in Specifies the identifier of a built -in image whi ch SHOULD be used as the icon of this control.
image identifier) The contents of this attribute are application -defined and SHOULD be ignored if not
understood.
The getimage , image ,and imageMso attributes are mutually exclusive. If none of these

attributes are specified, n 0 icon SHOULD be displayed.
For example, consider the following XML fragment:

133 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

<button id="button" imageMso="Bold" />

This specifies a custom button that SHOULD use the built
"Bold".

The possible values for this attribute are
section 2.3.5.

-in image with an identifier of

defined by the ST_ID simple type, as specified in

insertAfterMso
(identifier of built ~ -in
control to insert

after)

Specifies the identifier of a built -in control that this control SHOULD be inserted after. If the
value of this attribute is n ot understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

attributes are

For example, consider the following XML fragment:

<tab id="MyTab" insertAfterMso="TabHome" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
built -in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the
section 2.3.5.

ST_ID simple type, as specified in

insertAfterQ
(qualified identifier
of control to insert
after)

Specifies the qualified identifier of a control that this control SHOULD be inserted after. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

attributes are

For example, consider the following XML fragment:

<tab id="MyTab" inse
é
</tab>

rtAfterQ="x:OtherTab" label="Custom Tab">

In this example, a new custom tab with an identifier of "MyTab" is to be inserted after the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by t
in section 2.3.9.

he ST_QID simple type, as specified

insertBeforeMso
(identifier of built ~ -in
control to insert
before)

-in control that this control SHOULD be inserted before. If
the value of this attribute is not under stood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso ,and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order th ey are defined in the XML.

Specifies the identifier of a built

attributes are

For example, consider the following XML fragment:

<tab id="MyTab" insertBeforeMso="TabHome" label="Custom Tab">
é
</tab>

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
built -in tab with an identifier of "TabHome".

The possible values for this attribute are defined by the
section 2.3.5.

ST_ID simple type, as specified in

134 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

insertBeforeQ
(qualified identifier
of control to insert
before)

Specifies the qualified identifier of a control t hat this control SHOULD be inserted before. If
the value of this attribute is not understood, it SHOULD be ignored.

The insertAfterMso , insertAfterQ , insertBeforeMso , and insertBeforeQ
mutually exclusive. If none of these attributes are specified, the controls SHOULD be
appended to the existing set of controls, in the order they are defined in the XML.

attributes are

For example, consider the following XML fragment:

<tab id="MyTab" inse
é
</tab>

rtBeforeQ="x:0OtherTab" label="Custom Tab">

In this example, a new custom tab with an identifier of "MyTab" is to be inserted before the
custom tab with a qualified identifier of "x:OtherTab".

The possible values for this attribute are defined by
in section 2.3.9.

the ST_QID simple type, as specified

keytip (keytip)

Specifies a string to be used as the suggested KeyTip for this control.

The keytip and getKeytip attributes are mutually exclusive. If neither attribute is
specified, the application SHOULD generate a KeyTip for the control automatically.

For example, consider a button with KeyTip 'K', as follows:

1

=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" keytip="K" />

The possible values for this attribute are defined by the
specified in section 2.3.7 .

ST _Keytip simple type, as

label (label)

Specifies a string to be used as the label for this control.

The labe | and getLabel attributes are mutually exclusive. If neither attribute is specified,
no label SHOULD be displayed.

For example, consider the following XML fragment:

<button id="button" label="Custom Button" />

This specifies a custom button with a label of "Custom Button".

The possible values for this attribute are defined by the
specified in section 2.3.11 .

ST_String simple type, as

maxLength
(maximum input
string length)

Specifies an integer to be used as the maximum length of a string that can be entered
into the control.

If the maxLength attribute is omitted, the length of the input
limited except by application - specific constraints.

string SHOULD NOT be

For example, consider the following X ML fragment:

<editBox id="editBox" maxLength="10" />

This specifies an edit box control that can only accept strings up to 10 characters in
length.

The possible values for this attribute are defined by the
specified in secti on 2.3.12 .

ST_StringLength simple type, as

135 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

onChange Specifies the name of a callback function to be called when the text in the control has been
(onChange changed by the user.
callback) For example, consider the following XML f ragment:

<editBox id="editBox" onChange="EditBoxTextChanged" />

This specifies an edit box control that calls the EditBoxTextChanged callback function
when the user inputs a text string
The possible values for this attribute are defined by the ST _Delegate simple type, as

specified in section 2.3.2.

screentip Specifies a string to be shown as the screentip for this control.

(screentip) The screentip and getScreentip attributes are mutually exclusive. If neither attribute is

specified, the application SHOUL D display the label of the control as the screentip or display
no screentip at all.

For example, consider a button with a screentip, as follows:

LA
1 __:‘::).

Button

Custam Group

This is the screentip

li;_:ﬂl Book3.xlsx
Press F1 for more help.

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="This is the screentip" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

showlmage (show Specifies whether this control displays an icon.

image)
The showlmage and getShowlmage attributes are mutually exclusive. If neither

attribute is specified, the control SHOULD display its icon.
For example, consider a button that does not display an icon, as follows:

Button with no icon

Custam Graup

This is specified using the following XML fragment:

<butto n id="button" showlmage="false"
label="Button with no icon" />

The possible values for this attribute are defined by the XML schema boolean datatype.

136 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

showLabel (Show Specifies whether this control displays its label.
Label)

The showLabel and getShowlLa bel attributes are mutually exclusive. If neither attribute
is specified, the control SHOULD default to showing its label.

For example, consider the following XML fragment:

<button id="button" label="Label" showLabel="false"
imageMso="HappyFace" />

This specifiesa button that hasa label , but does not show it. Even though the label is
hidden, it is provided to accessibility tools.
The possible values for this attribute are defined by the XML schema boolean datatype.
sizeString (size Specifi es a string whose size is used to determine the width of the text input area of this
string) control.

If this attribute is omitted, the application SHOULD determine the width of the text input
area of the control automatically.

For example, consider the following XML fragment:

<editBox id="editBox" sizeString="WWWWWWWWWWWWW" />

This specifies an edit box control that is wide enough to display the string
The possible values for this attribute are defined by the ST_String simple type, as

specified in section 2.3.11.

supertip (supertip) Specifiesa string to be shown as the supertip of the control.

The supertip and getSupertip attributes are mutually exclusive. If neither attribute is
specified no supertip for this control SHOULD be shown.

For example , consider a control with a supertip, as follows:
[maly
=)

Button

Custam Group

J_ w iy

i Book3.xlsx
2 Press F1 for mare help,
=

This is specified using the following XML fragment:

<button id="button" imageMso="HappyFace" label="Button"
size="large" screentip="Screentip"
supertip="This is the supertip string" />

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

tag (tag) Specifies an arbitrary ~ string that can be used to hold data or identify the control. The
contents of this attribute SHOULD be passed to any callback functions specified on this

137 | 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes Description

control.
If this attribute is omitted, the control's tag value SHOULD default to an empty string
For example, consider the following XML fragment:

<button id="button" label="Button" tag="123456"
onAction="Bu ttonClicked" />

This specifiesa button witha tag value of "123456", which is passed to the
ButtonClicked callback function.

The possible values for this attribute are defined by the ST_String simple type, as
specified in section 2.3.11.

visible (control Specifies the visibility state of the control.

visibility) The getVisible and visible attributes are mutually exclusive. If these attributes are

omitted, the control SHOULD default to being visible.
For example, consider the following XML fragment:

<tabi dMso="TabHome" visible="false" />

In this example, the built -in tab with an identifier of "TabHome" is hidden.
The possible values for this attribute are defined by the XML schema boolean datatype.

The following XML schema fragment defines the contents of this element:

<xsd:complexType name="CT_EditBox">
<xsd:complexContent>
<xsd:extension base="CT_Control">
<xsd:attributeGroup ref="AG_Enabled"/>
<xsd:attributeGroup ref="AG_Image"/>
<xsd:attribute name="maxLength" type="ST_StringLength" use="optional"/>
<xsd:attribute name="getText" type="ST_Delegate" use="optional"/>
<xsd:attribute name="onChange" type="ST_Delegate" use="optional"/>
<xsd:attribute name="sizeString" type="ST_S tring" use="optional"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

2.2.21 gallery (Gallery)

This element specifies a gallery control, which displays a drop -down grid of items that the user can
select from. A gallery can optionally have buttons following its selection items.

For example, consider a gallery control that shows a selection of pictures, as follows:

138 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

L5, [S R L S

Figure 12 : A gallery control

This is specified using the following XML fr agment:

<gallery id="gallery" label="Gallery" itemWidth="88" itemHeight="68"
size="large" imageMso="HappyFace" >
<item id="item1" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" ima ge="Tree" />
</gallery>

The following table summarizes the elements that are parents of this element.

Parent Elements

box (section 2.2.1); group (section 2.2.23)

The following table summarizes the child elements of this element.

Child Elements Section
button (Unsized Button) 2.2.3
item (Selection Item) 2.2.24
The following table summarizes the attributes of this element.
Attributes Description
columns (column Specifies the number of columns that the gallery's items SHOULD be arranged into.
count) Ifthe columns attribute is omitted, the application SHOULD choose the number of columns

automatically based on the number of items.

For example, consider a gallery control with six items arranged into two columns, as
follows:

139 / 522

[MS -CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

Attributes

Description

Cu
== -
— E__
1 =
2
3
4
5
(i
7
3
{]
This is specified using the following XML fragment:

<gallery id="gallery" label="Gallery" columns="2"
size="large" imageMso="HappyFace" >
<item id="item1" image="Desert" />
<item id="item2" image="Forest" />
<item id="item3" image="Toucan" />
<item id="item4" image="Tree" />
<item id="item5" image="Flowers" />
<item id="item6" image="Whale" />

</gallery>
The possible values for this attribute are defined by the ST_GalleryRowColumnCount
simple type, as specified in section 234 .

description
(description)

Specifies a detailed description of the control, which SHOULD be displayed in detailed
views.

The description and getDescription attributes are mutually exclusive. If neither attrib
is specified, the control SHOULD NOT display any detailed text.

For example, consider a button with a detailed description, as follows:

» o Button
Ve S This s a verbose description that describes
the function of this control in detail.
This is specified using the following XML fragment:

<button id="button" label="Button" imageMso="HappyFace"
desc ription="This is a verbose description that describes
the function of this control in detail." />

The possible values for this attribute are defined by the ST_LongString simple type, as
specified in section 2.3.8 .

ute

enabled (enabled
state)

Specifies the enabled state of the control.
The getEnabled and enabled attributes are mutually exclusive. If neither attribute is

140 / 522

[MS-CUSTOMUI] - v20170919
Custom Ul XML Markup Specification
Copyright © 2017 Microsoft Corporation
Release: September 19, 2017

